OEIS/3x+1 Problem: Difference between revisions

From tehowiki
Jump to navigation Jump to search
imported>Gfis
Permutation
new section
 
(6 intermediate revisions by one other user not shown)
Line 1: Line 1:
==Abstract==
A collection of considerations regarding the '''[https://en.wikipedia.org/wiki/Collatz_conjecture Collatz conjecture]'''.  
The graph defined by Collatz for his ''3x + 1'' problem is overlaid with a set of small, finite trees with two branches. It is shown that this set of trees not only contains all numbers, but that it defines a permutation of the numbers. Furthermore, rules are defined how some subsets of these trees can be attached to other subsets. It is shown that no cycles can arise, and that finally the process leads to only one set of interconnected subtrees. Therefore, the Collatz graph is a tree which contains all numbers.
==Introduction==
'''Collatz sequences''' (also called  ''trajectories'') are sequences of integer numbers > 0. For some start value > 0 the elements of a particular sequence are constructed with two simple rules:
# Even numbers are halved.
# Odd numbers are multiplied by 3 and then incremented by 1.
Since decades it is unknown whether the final cyle 4 - 2 - 1 is always reached for all start values. This problem is the '''Collatz conjecture''', for which the [https://en.wikipedia.org/wiki/Collatz_conjecture English Wikipedia] states:
: It is also known as the 3n + 1 conjecture, the Ulam conjecture (after Stanisław Ulam), Kakutani's problem (after Shizuo Kakutani), the Thwaites conjecture (after Sir Bryan Thwaites), Hasse's algorithm (after Helmut Hasse), or the Syracuse problem; the sequence of numbers involved is referred to as the hailstone sequence or hailstone numbers (because the values are usually subject to multiple descents and ascents like hailstones in a cloud), or as wondrous numbers.


Simple visualizations of Collatz sequences do not show any obvious structure. The sequences for the first dozen of start values are rather short, but the sequence for 27 suddenly has 112 elements.
It is splitted into the following parts:
<p align="right">''Da sieht man den Wald vor lauter B&auml;men nicht.''<br />German proverb: ''You cannot see the wood for the trees.''
* [[OEIS/3x%2B1_Intro]]  
</p>
* [[OEIS/3x%2B1_Segments]]  
===References===
* [[OEIS/3x%2B1_Connectivity]]  
* Jeffry C. Lagarias, Ed.: ''The Ultimate Challenge: The 3x+1 Problem'', Amer. Math. Soc., 2010, ISBN 978-8218-4940-8. [http://www.ams.org/bookpages/mbk-78 MBK78]
* [[OEIS/3x%2B1_Levels]]
* OEIS A070165: [http://oeis.org/A070165/a070165.txt  File of first 10K Collatz sequences], ascending start values, with lengths
* [[OEIS/Attaching segments]]
* Manfred Tr&uuml;mper: ''The Collatz Problem in the Light of an Infinite Free Semigroup''. Chinese Journal of Mathematics, Vol. 2014, [http://dx.doi.org/10.1155/2014/756917 Article ID 756917], 21 p.
 
==Collatz Graph==
When all Collatz sequences are read backwards, they form the '''Collatz graph''' starting with 1, 2, 4, 8 ... . At each node ''n &gt; 4'' in the graph, the path from the root (4) can be continued
* always to ''n * 2'', and
* to ''(n - 1) / 3'' if ''n &#x2261; 1 mod 3''.
 
The '''Collatz conjecture''' claims that the Collatz graph
* contains all numbers,
and that - except for the leading cycle 1 - 2 - 4 - 1 - 2 - 4 ... -
* it has the form of a tree (without cycles).
We will not consider the leading cycle, and we start the graph with node 4, the '''root'''.
Furthermore we observe that a path can only be continued with duplications once it reaches a node ''n &#x2261; 0 mod 3''. We omit these trivial continuations.
===Graph Operations===
Following [http://dx.doi.org/10.1155/2014/756917 Tr&uuml;mper], we use abbreviations for the elementary '''operations''' which map a node (element, number) ''n'' in the Collatz graph to the neighbouring node as shown in the following table (T1):
{| class="wikitable" style="text-align:center"
!Name    !! Mnemonic    !! Distance to root  !! Mapping                    !! Condition
|-
| d      || "down"      || -1                || n &#x21a6; n / 2          || n &#x2261; 0 mod 2
|-
| u      || "up"        || -1                || n &#x21a6; 3 * n + 1      || (none)
|-
| s := ud || "spike"    || -2                || n &#x21a6; (3 * n + 1) / 2)|| n &#x2261; 1 mod 2
|-
| &delta; || "divide"    || +1                || n &#x21a6; (n - 1) / 3    || n &#x2261; 1 mod 3
|-
| &micro; || "multiply"  || +1                || n &#x21a6; n * 2          || (none)
|-
| &sigma; := &delta;&micro;|| "squeeze" || +2 ||n &#x21a6; ((n - 1) / 3) * 2|| n &#x2261; 1 mod 3
|}
The operations will be noted as ''infix'' operators, with the source node as left operand and the target node as right operand, for example ''10 &delta;&micro; 6''. In the following, we will mainly be interested in the reverse mappings (denoted by greek letters) which move away from the root 4 of the graph.
 
===Motivation: Patterns in sequences with the same length===
A closer look at the Collatz sequences shows a lot of pairs of adjacent start values which have the same sequence length, for example (from [https://oeis.org/A070165 OEIS A070165]):
143/104: 143 u 430 d 215 u 646 d 323 u 970 d 485 u 1456 d 728 d 364 ] d 182 ... 4 d 2 d 1
142/104: 142 d  71 u 214 d 107 u 322 d 161 u 484 d  242 d 121 u 364 ] d 182 ... 4 d 2 d 1
Beginning at some node of the form ''6*i - 2'' (364 in the example), these sequences join and follow the same path down to the root 4. The two differing parts of the sequences show a regular pattern, where nodes of the form ''6*i - 2'' alternate with other nodes, and where the operations ''u'' and ''d'' also alternate.
This pattern of operations can be continued to the left with additional ''d'' and ''u'' operations:
126 d [ 63 u 190 d  95 u 286 d 143 u ...
  n? u [ 62 d  31 u  94 d  47 u 142 d ...
Finally the pattern stops because there is no integer ''n'' such that ''n * 3 + 1 = 62''.
 
Example (E1) shows the sequences above, read from right to left, with the inverse operations:
[ 364 &micro; 728 &micro; 1456 &delta; 485 &micro; 970 &delta; 323 &micro; 646 &delta; 215 &micro; 430 &delta; 143 &micro; 286 &delta;  95 &micro; 190 &delta; 63 ]
[ 364 &delta; 121 &micro;  242 &micro; 484 &delta; 161 &micro; 322 &delta; 107 &micro; 214 &delta;  71 &micro; 142 &delta;  47 &micro;  94 &delta;  31 &micro; 62 ]
==Segments==
These patterns lead us to the construction of special subtrees in the Collatz graph which we call '''segments'''. This construction is the main result of this article, and as we will see, it exhibits a nested structure reminding to a ruler. Though the structure is still complicated, it is - in contrast to the Collatz graph - very regular and "predictible" in all it's properties.
 
Starting at some node of the form ''6*i - 2'' (the ''left side'', LS), the construction creates two subpaths  (the ''upper branch'' and the ''lower branch'') which to the right by a prescribed sequence of operations.
:The nodes of the form ''6*i - 2'' play a special role because both a &delta; and a &micro; operation can be applied to them. We could also have used ''6*i + 4'' instead, but the formulas seem easier with ''6*i - 2'', therefore we always use this form. Later we will consider nodes where ''6*i - 2'' is transformed to ''j'', where ''j'' also may have the form ''j = 6*k - 2'', etc.
 
Informally, a segment is constructed as follows:
* Step 1: Start with some node ''6*i - 2'' as the left side (LS).
* Step 2: Apply &delta; to the LS to get the first node in the lower branch.
* Step 3: Apply &micro; to the LS to get the first node in the upper branch.
* Steps 4, 5: Apply &micro; to both branches.
* In a loop, apply opposite operations to both branches, starting with &micro; (step 6) on the lower and &delta; (step 7) on the upper branch, continuing with &delta; (step 8) on the lower and &micro; (step 9) on the upper branch, and so on, as long as the next &delta; operation is possible.
The construction is such that increasing instances of &sigma; operations are accumulated in each branch.
 
===Segment directory===
The resulting set of small trees is listed in a so-called '''[http://teherba.org/fasces/oeis/collatz/double.html segment directory]''' (the link shows several thousand subtrees arranged by increasing left side, together with some additional information).
:The segment directory shows the segments in rows of a table. The steps are mapped to columns of the table. In order to maintain the subtree structure with two branches, each row contains a pair of columns numbered 3, 5, 7, ... for the upper branch and 2, 4, 6, ... for the lower branch.
:Nodes in the branches of a segment which have the form ''6*i - 2'' are shown in bold face. If ''i'' also has the form ''6*k - 2'', the node has a yellow background.
====Details of a segment====
The following table '''(T1)''' shows various properties of the steps reps. columns in the segment construction:
{| class="wikitable" style="text-align:left"
!Column j || Branch !! Operation                                !! Form of i  !! Formula              !! First elements  !! Covered nodes!! Remaining nodes
|-                                                                                                                       
|'''1''' ||(LS) ||                                              ||            ||6*i - 2              ||4, 10, 16, 22    ||              ||1, 2, 4, 5 mod 6
|-                                                                                                                                         
| 2      ||lower||&delta;                                      ||            ||2*i - 1              ||1, 3, 5, 7        ||1, 3, 5 mod 6 ||2, 4 mod 6
|-                                                                                                                                         
| 3      ||upper||&micro;                                      ||            ||12*i - 4              ||8, 20, 32, 44    ||8 mod 12      ||2, 4, 10 mod 12
|-                                                                                                                                         
| 4      ||lower||&sigma;                                      ||            ||12*(i - 1)/1 + 2      ||2, 14, 16, 38    ||2 mod 12      ||4, 10 mod 12
|-                                                                                                                                       
|'''5''' ||upper||&micro;<sup>2</sup>                          ||            ||24*(i - 1)/1 + 16    ||16, 40, 64, 88    ||16 mod 24    ||4, 10, 22 mod 24
|-                                                                                                                             
|'''6''' ||lower||&sigma;&micro;                                ||i = 3*k + 1  ||24*(i - 1)/3 + 4      ||4, 28, 52, 76    ||4 mod 24      ||10, 22, 34, 46 mod 48
|-                                                                                                                           
| 7      ||upper||&micro;<sup>2</sup>&delta;                    ||i = 3*k + 1  ||24*(i - 1)/3 + 5      ||5, 29, 53, 77    ||(cf. column 2)||
|-                                                                                                                             
| 8      ||lower||&sigma;&micro;&delta;                        ||i = 3*k + 1  ||24*(i - 1)/3 + 17    ||17, 41, 65, 89    ||(cf. column 2)||
|-                                                                                                                             
|'''9''' ||upper||&micro;<sup>2</sup>&sigma;                    ||i = 3*k + 1  ||48*(i - 1)/3 + 10    ||10, 58, 106, 154  ||10 mod 48    ||22, 34, 46 mod 48
|-                                                                                                                                         
|'''10'''||lower||&sigma;&micro;&sigma;                        ||i = 9*k + 7  ||48*(i - 7)/9 + 34    ||34, 82, 130, 178  ||34 mod 48    ||22, 46, 70, 94 mod 96
|-                                                                                                                                         
|11      ||upper||&micro;<sup>2</sup>&sigma;&delta;            ||i = 9*k + 7  ||48*(i - 7)/9 + 35    ||35, 83, 131, 179  ||(cf. column 2)||
|-                                                                                                                                         
|12      ||lower||&sigma;&micro;&sigma;&delta;                  ||i = 9*k + 7  ||48*(i - 7)/9 + 11    ||11, 59, 107, 155  ||(cf. column 2)||
|-                                                                                                                                         
|'''13'''||upper||&micro;<sup>2</sup>&sigma;<sup>2</sup>        ||i = 9*k + 7  ||96*(i - 7)/9 + 70    ||70, 166, 262, 358 ||70 mod 96    ||22, 46, 94 mod 96
|-                                                                                                                                         
|'''14'''||lower||&sigma;&micro;&sigma;<sup>2</sup>            ||i = 27*k + 7 ||96*(i - 7)/27 + 22    ||22, 118, 214, 310 ||22 mod 96    ||46, 94, 142, 190 mod 192
|-                                                                                                                                       
|15      ||upper||&micro;<sup>2</sup>&sigma;<sup>2</sup>&delta; ||i = 27*k + 7 ||96*(i - 7)/27 + 23    ||23, 119, 215, 311 ||(cf. column 2) ||
|-                                                                                                                                           
|16      ||lower||&sigma;&micro;&sigma;<sup>2</sup>&delta;      ||i = 27*k + 7 ||96*(i - 7)/27 + 71    ||71, 167, 263, 359 ||(cf. column 2) ||
|-                                                                                                                                           
|'''17'''||upper||&micro;<sup>2</sup>&sigma;<sup>3</sup>        ||i = 27*k + 7 ||192*(i - 7)/27 + 46  ||46, 238, 430, 622 ||46 mod 192    ||94, 142, 190 mod 192
|-                                                                                                                                         
|'''18'''||lower||&sigma;&micro;&sigma;<sup>3</sup>            ||i = 81*k + 61||192*(i - 61)/81 + 142 ||142, 334, 526, 718||142 mod 192    ||94, 190, 286, 382 mod 384
|-                                                                                                                                         
|19      ||upper||&micro;<sup>2</sup>&sigma;<sup>3</sup>&delta; ||i = 81*k + 61||192*(i - 61)/81 + 143 ||143, 225, 527, 719||(cf. column 2) ||
|-                                                                                                                   
| j      ||  || ||i = q<sub>j</sub>*k + r<sub>j</sub> || s<sub>j</sub>*(i - r<sub>j</sub>)/q<sub>j</sub> + t<sub>j</sub>  || t<sub>j</sub>, ... || t<sub>j</sub> mod s<sub>j</sub>  ||
|-
|}
The general formula (in the last row of T1) for a column ''j >= 5'' uses the following parameters:
* ''q<sub>j</sub> = 3^(floor((j - 2) / 4)'',
* ''r<sub>j</sub> = [http://oeis.org/A066443 A066443](floor((j - 2) / 8))'', where A066443 is the OEIS sequence ''a(n)'' defined by ''a(0) = 1; a(n) = 9 * a(n-1) - 2 for n &gt; 0''; the terms are the indexes 1, 7, 61, 547, 4921 ... of the variable length segments with left sides 4, 40, 364, 3280, 29524 ([http://oeis.org/A191681 OEIS A191681]),
* ''s<sub>j</sub> = 3*2^floor((j + 7) / 4)'',
* ''t<sub>j</sub> = 6*[http://oeis.org/draft/A308709 A308709](floor(j + 2*floor((j - 3) / 4))/3)) - 2'', where A308709 = 3, 1, 2, 6, 12, 4, ... is a simple, linear recurrent OEIS sequence (only for j = 5,6, 9,10, 13,14, ...).
===Finite, arbitrary length of the segments===
First we have to show that the segment construction process always stops.
For this purpose, we observe that the &sigma; operation, when applied to left sides of the form ''6*(3*k) - 2''  has the interesting property that it maintains the general form ''6*i - 2'':
6*(3*k) - 2 &sigma; (2*(3*k) - 1) * 2 = 12*k - 2 = 6*(2*k) - 2
That means that
:&sigma; replaces one factor 3 by a factor 2
The mnemonic is that &sigma; "squeezes" a 3 into a 2. In the opposite direction, the ''s ("spike")'' operation replaces one factor 2 by a factor 3.
 
The branch prolongation in the segment construction process must stop when the successive &sigma; operations have exhausted all factors of 3 in the left side. Therefore, all segments have a finite length.
 
It is also clear that there is no limit on the length of a segment, since we only need to take a segment which has a factor of 3 with a sufficiently high power in its left side. The &sigma; operations will then stretch out to the corresponding length.
===Segments do not contain cycles===
The modulo conditions of the columns (column "Covered nodes" in T1) ensure that all nodes in a segment are different. Therefore the two branches remain disjoint, and they cannot lead to a cycle.
 
===Coverage===
We are now interested how the numbers >= 1 are distributed over the segments. Corresponding remarks are contained in the last two columns of table T1.
 
First we state again that we are not interested in even nodes of the form ''3*2*k'', because only &micro; operations can be applied on them. We disregards such nodes.
 
Next we see that column 2 contains all odd numbers (''i &#x2261; 1, 3, 5 mod 6''). Columns 7, 8, 11, 12, 15, 16, 19, 20 ... also contain subsets of odd numbers, but we disregard these columns, since their terms are duplicated in column 2.
 
So far we did not yet cover numbers of the form ''i &#x2261; 2, 4 mod 6'' (or ''i &#x2261; 2, 4, 8, 10 mod 12'').
 
Column 3 contains numbers of the form ''i &#x2261; 8 mod 12'', so we are left with 2, 4, 10 mod 12. Column 4, if it exists, contains numbers of the form ''i &#x2261; 2 mod 12''. This leaves ''i &#x2261; 4, 10 mod 12''.
 
As indicated in the last two columns of table T1 above, the columns 5, 6, 9, 10, 13, 14 ... each contribute numbers with a more refined modulo condition. Since the segment directory contains arbitrarily long segments respectively arbitrarily many columns, the modulo conditions of any height are finally fulfilled.
 
Furthermore, since the modulo conditions lead to disjoint subsets of the numbers, it is ensured that any number can occur only once in the columns 2-6, 9, 10, 13, 14, ...
 
In total, the nodes in the aforementioned columns are a permutation of the numbers which are not divisible by 6.

Latest revision as of 07:50, 2 August 2023

A collection of considerations regarding the Collatz conjecture.

It is splitted into the following parts: