OEIS: Difference between revisions
Jump to navigation
Jump to search
imported>Gfis +Trotter |
imported>Gfis Cumulative counting |
||
Line 9: | Line 9: | ||
** Perl and C programs find 1, 2, 20, 1744, 2 002 568, 42 263 042 752 triangles for the ''between'' condition | ** Perl and C programs find 1, 2, 20, 1744, 2 002 568, 42 263 042 752 triangles for the ''between'' condition | ||
* '''[[OEIS/A003828|A003828]]''', Numbers n such that n^4 is a primitive sum of 3 positive fourth powers: 422481, 2813001, 8707481, 12197457, 16003017, 16430513, 20615673, 44310257, 68711097, 117112081, 145087793, 156646737, 589845921, 638523249, 873822121, 1259768473, 1679142729, 1787882337, 1871713857 | * '''[[OEIS/A003828|A003828]]''', Numbers n such that n^4 is a primitive sum of 3 positive fourth powers: 422481, 2813001, 8707481, 12197457, 16003017, 16430513, 20615673, 44310257, 68711097, 117112081, 145087793, 156646737, 589845921, 638523249, 873822121, 1259768473, 1679142729, 1787882337, 1871713857 | ||
* '''[http://oeis.org/A055187 A055187]''' | * '''[http://oeis.org/A030707 A030707]''', '''[http://oeis.org/A055187 A055187]''', '''[http://oeis.org/A217760 A217760]''' and related sequences | ||
** generalized '''[[OEIS/Cumulative_counting|cumulative counting]]''', Clark Kimberling's [http://faculty.evansville.edu/ck6/integer/unsolved.html problem no. 4] | |||
* '''[http://oeis.org/A112273 A112273]''': 5, 15, 365, 945 - a puzzle sequence | * '''[http://oeis.org/A112273 A112273]''': 5, 15, 365, 945 - a puzzle sequence | ||
** my guess: 5*3^0, 5*3^1, 5*73 (or should that be 315 = 5*7*3^2 ?), 5*7*3^3 | ** my guess: 5*3^0, 5*3^1, 5*73 (or should that be 315 = 5*7*3^2 ?), 5*7*3^3 |
Revision as of 08:18, 25 April 2018
The On-Line Encyclopedia of Integer Sequences® of Neil Sloane et al.
- A Handbook of Integer Sequences (Academic Press, New York and London 1973).
- Automatic detection and correction of invalid hyperlinks in the OEIS in 2008-2009
- Engel expansion - English translation of Friedrich Engel's speech: Entwicklung der Zahlen nach Stammbrüchen. Verhandlungen der 52. Versammlung Deutscher Philologen und Schulmänner, 1913, Marburg, pp. 190-191
- WTM World of Terrel Trotter's Math (archive copy of the original webpage of 2004, c.f. his OEIS user page)
Work on individual sequences
- Triangles with interlacing rows, Clark Kimberling's problem no. 18
- Perl and C programs find 1, 2, 20, 1744, 2 002 568, 42 263 042 752 triangles for the between condition
- A003828, Numbers n such that n^4 is a primitive sum of 3 positive fourth powers: 422481, 2813001, 8707481, 12197457, 16003017, 16430513, 20615673, 44310257, 68711097, 117112081, 145087793, 156646737, 589845921, 638523249, 873822121, 1259768473, 1679142729, 1787882337, 1871713857
- A030707, A055187, A217760 and related sequences
- generalized cumulative counting, Clark Kimberling's problem no. 4
- A112273: 5, 15, 365, 945 - a puzzle sequence
- my guess: 5*3^0, 5*3^1, 5*73 (or should that be 315 = 5*7*3^2 ?), 5*7*3^3
- A131388, and A131393 with recovered Rule 2
- generalized negative-positive incrementing sequences of Clark Kimberling, with listing and program
- A213457 Intertwining numbers: a(8) = 1058349286
- A220952: 0, 1, 2, 3, 4, 9, 14, 19, 18, 17, 16, 11, 12, 13, ..., 49 ... by Don Knuth, Feb. 20, 2013, was
unkn
- additional FASS curves: space-filling, self-avoiding, simple and self-similar curves
- A291939: 1, 12, 19, 27, 37 - overlapping of Collatz sequences, was
unkn
, with 3D visualization