OEIS/Triangles: Difference between revisions

From tehowiki
Jump to navigation Jump to search
imported>Gfis
A231074 etc.
imported>Gfis
+dead A083568
Line 26: Line 26:
   1, 1, 1, 1, 2, 12, 244
   1, 1, 1, 1, 2, 12, 244
   nonn,more
   nonn,more
: Vladimir Letsko, [http://www-old.fizmat.vspu.ru/doku.php?id=marathon:problem_183 Mathematical Marathon, Problem 183] (in Russian)
: Vladimir Letsko, [http://www-old.fizmat.vspu.ru/doku.php?id=marathon:problem_183 Mathematical Marathon, Problem 183] (in Russian)
* [https://oeis.org/A231085 A231085] similiar, same author: a(1..7), more
* [https://oeis.org/A131811 A131811] Number of symbolic sequences on n symbols that can be realized by the arrangement of the real roots of some polynomial of degree n and its derivatives.
* [https://oeis.org/A131811 A131811] Number of symbolic sequences on n symbols that can be realized by the arrangement of the real roots of some polynomial of degree n and its derivatives.
* [https://oeis.org/A213457 A213457] Intertwining numbers. (Formerly M1988)
1, 1, 2, 10, 148, 7384, 1380960, more
* [https://oeis.org/A083568 A083568] Duplicate of A003121. dead

Revision as of 13:54, 17 March 2018

  • A282698 contains A003121 (for triangles with strict "less than" interlacing), and 20, 1744
  • A003121
Number of ways to arrange the numbers 1,2,...,n(n+1)/2 
in a triangle so that the rows interlace; 
e.g. one of the 12 triangles counted by a(4) is
       6
     4   8
   2   5   9
 1   3   7   10
 - Clark Kimberling, Mar 25 2012
The a(4) = 12 ways to fill a triangle with the numbers 0 through 9:
    5         6         6         5
   3 7       3 7       2 7       2 7
  1 4 8     1 4 8     1 4 8     1 4 8
 0 2 6 9   0 2 5 9   0 3 5 9   0 3 6 9
    5         3         3         4
   3 6       2 6       2 7       3 7
  1 4 8     1 5 8     1 5 8     1 5 8
 0 2 7 9   0 4 7 9   0 4 6 9   0 2 6 9
    4         4         5         4
   2 6       2 7       2 6       3 6
  1 5 8     1 5 8     1 4 8     1 5 8
 0 3 7 9   0 3 6 9   0 3 7 9   0 2 7 9
- R. H. Hardin, Jul 06 2012
  • A231074 The number of possible ways to arrange the sums x_i + x_j (1 <= i < j <= n) of the items x_1 < x_2 <...< x_n in nondecreasing order.
 1, 1, 1, 1, 2, 12, 244
 nonn,more
Vladimir Letsko, Mathematical Marathon, Problem 183 (in Russian)
  • A231085 similiar, same author: a(1..7), more
  • A131811 Number of symbolic sequences on n symbols that can be realized by the arrangement of the real roots of some polynomial of degree n and its derivatives.
  • A213457 Intertwining numbers. (Formerly M1988)
1, 1, 2, 10, 148, 7384, 1380960, more