Collatz Streetmap: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
imported>Gfis  3 ropes  | 
				imported>Gfis  4 seqs  | 
				||
| Line 7: | Line 7: | ||
             +1  *6+4    +1  *6+4    +1  *6+4    +1   *6+4  *6+2      =    =  ...  |              +1  *6+4    +1  *6+4    +1  *6+4    +1   *6+4  *6+2      =    =  ...  | ||
  143/104: [143 d 430 m 215 d 646 m 323 d 970 m 485 d 1456 m 728 m | 364, 182, 91, ... 10, 5, 16, 8, 4, 2, 1]  |   143/104: [143 d 430 m 215 d 646 m 323 d 970 m 485 d 1456 m 728 m | 364, 182, 91, ... 10, 5, 16, 8, 4, 2, 1]  | ||
*   | * 3 adjacent sequences  | ||
The pattern changes when a multiple of 3 is reached in the lower row:  | |||
  124/109: [124 m  62 m  31 d  94 m  47 d 142 m  71 d 214 m 107 d 322 m 161 d 484 m  242 m 121 d | 364 ...  |   124/109: [124 m  62 m  31 d  94 m  47 d 142 m  71 d 214 m 107 d 322 m 161 d 484 m  242 m 121 d | 364 ...  | ||
             +1  *6+4  *6+2     =     =     =     =     =     =     =     =     =      =     =       = ...  |              +1  *6+4  *6+2     =     =     =     =     =     =     =     =     =      =     =       = ...  | ||
  125/109: [125 d 376 m 188 m  94 m  47 d 142 m  71 d 214 m 107 d 322 m 161 d 484 m  242 m 121 d | 364 ...  |   125/109: [125 d 376 m 188 m  94 m  47 d 142 m  71 d 214 m 107 d 322 m 161 d 484 m  242 m 121 d | 364 ...  | ||
             +1    |              +1  -4/6    +2    +1  *6+4    +1  *6+4    +1  *6+4    +1  *6+4    +1   *6+4  *6+2       = ...  | ||
  126/109: [126 m  63 d 190 m  95 d 286 m 143 d 430 m 215 d 646 m 323 d 970 m 485 d 1456 m 728 m | 364 ...  |   126/109: [126 m  63 d 190 m  95 d 286 m 143 d 430 m 215 d 646 m 323 d 970 m 485 d 1456 m 728 m | 364 ...  | ||
* 4 adjacent sequences  | |||
 314/38:  [314 m 157 d 472 m  236 m 118 m  59 d  178 m  89 d  268 m 134 m  67 d 202 m 101 d 304 m 152 m 76 m 38 m  | |||
            +1  *6+4    +1   *6+4  *6+2  *6+1   *6-2  *6-1   *6-8  *6+4  *6-2    -2    -1  -4/6  -2/6  | |||
 315/38:  [315 d 946 m 473 d 1420 m 710 m 355 d 1066 m 533 d 1600 m 800 m 400 m 200 m 100 m  50 m  25 d 76 m 38 m  | |||
            +1  -2/6  +1/6   +8/6  +4/6    +3   +8/6    +5  +16/6    +8    +4    +2    +1  *6+4  *6+2  | |||
 316/38:  [316 m 158 m  79 d  238 m 119 d 358 m  179 d 538 m  269 d 808 m 404 m 202 m 101 d 304 m 152 m 76 m 38 m  | |||
            +1  *6+4  *6+2      =     =     =      *     *      =     =     =     =     =     =     =  | |||
 317/38:  [317 d 952 m 476 d  238 m 119 d 358 m  179 d 538 m  269 d 808 m 404 m 202 m 101 d 304 m 152 m 76 m 38 m  | |||
* 5 adjacent sequences  | |||
 86/121:  [386,  193, 580,  290, 145, 436, 218, 109, 328, 164, 82,  41, 124,  62,  31, 94, 47, 142, 71  | |||
 87/121:  [387, 1162, 581, 1744, 872, 436, 218, 109, 328, 164, 82,  41, 124,  62,  31, 94, 47, 142, 71  | |||
 88/121:  [388,  194,  97,  292, 146,  73, 220, 110,  55, 166, 83, 250, 125, 376, 188, 94, 47, 142, 71  | |||
 89/121:  [389, 1168, 584,  292, 146,  73, 220, 110,  55, 166, 83, 250, 125, 376, 188, 94, 47, 142, 71  | |||
 90/121:  [390,  195, 586,  293, 880, 440, 220, 110,  55, 166, 83, 250, 125, 376, 188, 94, 47, 142, 71  | |||
 418/41:  [418,  209, 628,  314, 157, 472, 236, 118,  59, 178,  89, 268, 134,  67, 202, 101,   | |||
 419/41:  [419, 1258, 629, 1888, 944, 472, 236, 118,  59, 178,  89, 268, 134,  67, 202, 101,   | |||
 420/41:  [420,  210, 105,  316, 158,  79, 238, 119, 358, 179, 538, 269, 808, 404, 202, 101,   | |||
 421/41:  [421, 1264, 632,  316, 158,  79, 238, 119, 358, 179, 538, 269, 808, 404, 202, 101,   | |||
 422/41:  [422,  211, 634,  317, 952, 476, 238, 119, 358, 179, 538, 269, 808, 404, 202, 101,  | |||
Revision as of 18:41, 19 August 2018
- File of first 10K Collatz sequences, ascending start values, with lengths
 - The Collatz-Problem. A view into some 3x+1-trees and a new fractal graphic representation. Gottfried Helms, Univ. Kassel
 - Collatzfolgen und Schachbrett auf Wikibooks
 
Patterns in similiar sequences
- 142, 143 with same length (from A070165):
 
142/104: [142 m  71 d 214 m 107 d 322 m 161 d 484 m  242 m 121 d | 364, 182, 91, ... 10, 5, 16, 8, 4, 2, 1]
           +1  *6+4    +1  *6+4    +1  *6+4    +1   *6+4  *6+2      =    =  ...
143/104: [143 d 430 m 215 d 646 m 323 d 970 m 485 d 1456 m 728 m | 364, 182, 91, ... 10, 5, 16, 8, 4, 2, 1]
- 3 adjacent sequences
 
The pattern changes when a multiple of 3 is reached in the lower row:
124/109: [124 m  62 m  31 d  94 m  47 d 142 m  71 d 214 m 107 d 322 m 161 d 484 m  242 m 121 d | 364 ...
           +1  *6+4  *6+2     =     =     =     =     =     =     =     =     =      =     =       = ...
125/109: [125 d 376 m 188 m  94 m  47 d 142 m  71 d 214 m 107 d 322 m 161 d 484 m  242 m 121 d | 364 ...
           +1  -4/6    +2    +1  *6+4    +1  *6+4    +1  *6+4    +1  *6+4    +1   *6+4  *6+2       = ...
126/109: [126 m  63 d 190 m  95 d 286 m 143 d 430 m 215 d 646 m 323 d 970 m 485 d 1456 m 728 m | 364 ...
- 4 adjacent sequences
 
314/38:  [314 m 157 d 472 m  236 m 118 m  59 d  178 m  89 d  268 m 134 m  67 d 202 m 101 d 304 m 152 m 76 m 38 m
           +1  *6+4    +1   *6+4  *6+2  *6+1   *6-2  *6-1   *6-8  *6+4  *6-2    -2    -1  -4/6  -2/6
315/38:  [315 d 946 m 473 d 1420 m 710 m 355 d 1066 m 533 d 1600 m 800 m 400 m 200 m 100 m  50 m  25 d 76 m 38 m
           +1  -2/6  +1/6   +8/6  +4/6    +3   +8/6    +5  +16/6    +8    +4    +2    +1  *6+4  *6+2
316/38:  [316 m 158 m  79 d  238 m 119 d 358 m  179 d 538 m  269 d 808 m 404 m 202 m 101 d 304 m 152 m 76 m 38 m
           +1  *6+4  *6+2      =     =     =      *     *      =     =     =     =     =     =     =
317/38:  [317 d 952 m 476 d  238 m 119 d 358 m  179 d 538 m  269 d 808 m 404 m 202 m 101 d 304 m 152 m 76 m 38 m
- 5 adjacent sequences
 
86/121: [386, 193, 580, 290, 145, 436, 218, 109, 328, 164, 82, 41, 124, 62, 31, 94, 47, 142, 71 87/121: [387, 1162, 581, 1744, 872, 436, 218, 109, 328, 164, 82, 41, 124, 62, 31, 94, 47, 142, 71 88/121: [388, 194, 97, 292, 146, 73, 220, 110, 55, 166, 83, 250, 125, 376, 188, 94, 47, 142, 71 89/121: [389, 1168, 584, 292, 146, 73, 220, 110, 55, 166, 83, 250, 125, 376, 188, 94, 47, 142, 71 90/121: [390, 195, 586, 293, 880, 440, 220, 110, 55, 166, 83, 250, 125, 376, 188, 94, 47, 142, 71
418/41: [418, 209, 628, 314, 157, 472, 236, 118, 59, 178, 89, 268, 134, 67, 202, 101, 419/41: [419, 1258, 629, 1888, 944, 472, 236, 118, 59, 178, 89, 268, 134, 67, 202, 101, 420/41: [420, 210, 105, 316, 158, 79, 238, 119, 358, 179, 538, 269, 808, 404, 202, 101, 421/41: [421, 1264, 632, 316, 158, 79, 238, 119, 358, 179, 538, 269, 808, 404, 202, 101, 422/41: [422, 211, 634, 317, 952, 476, 238, 119, 358, 179, 538, 269, 808, 404, 202, 101,