Collatz Streetmap: Difference between revisions
imported>Gfis new descr. |
imported>Gfis No edit summary |
||
Line 1: | Line 1: | ||
==Introduction== | |||
When all Collatz sequences are read backwards, they form a graph starting with 1, 2 ..., hopefully without cycles (except for 1,2,4,1,2,4 ...). At each node n in the graph, the path starting at the root (4) and with the last node n can in principle be continued to 2 new nodes by a | When all Collatz sequences are read backwards, they form a graph starting with 1, 2 ..., hopefully without cycles (except for 1,2,4,1,2,4 ...). At each node n in the graph, the path starting at the root (4) and with the last node n can in principle be continued to 2 new nodes by a | ||
* "m"-step: n * 2 (which is always possible), or a | * "m"-step: n * 2 (which is always possible), or a | ||
* "d"-step: (n - 1) / 3 (which is possible only if n | * "d"-step: (n - 1) / 3 (which is possible only if n ≡ 1 mod 3). | ||
When n mod 3 = 0, the path will continue with m-steps only, since the duplication maintains the divisibility by 3. | When n mod 3 = 0, the path will continue with m-steps only, since the duplication maintains the divisibility by 3. | ||
=== | ===References=== | ||
* Jeffry C. Lagarias, Ed.: ''The Ultimate Challenge: The 3x+1 Problem'', Amer. Math. Soc., 2010, ISBN 978-8218-4940-8. [http://www.ams.org/bookpages/mbk-78 MBK78] | * Jeffry C. Lagarias, Ed.: ''The Ultimate Challenge: The 3x+1 Problem'', Amer. Math. Soc., 2010, ISBN 978-8218-4940-8. [http://www.ams.org/bookpages/mbk-78 MBK78] | ||
* [http://oeis.org/A070165/a070165.txt File of first 10K Collatz sequences], ascending start values, with lengths | * OEIS A07165: [http://oeis.org/A070165/a070165.txt File of first 10K Collatz sequences], ascending start values, with lengths | ||
* [http://go.helms-net.de/math/collatz/aboutloop/collatzgraphs.htm The Collatz-Problem]. A view into some 3x+1-trees and a new fractal graphic representation. | * Gottfried Helms: ''[http://go.helms-net.de/math/collatz/aboutloop/collatzgraphs.htm The Collatz-Problem]''. A view into some 3x+1-trees and a new fractal graphic representation. Univ. Kassel. | ||
* [https://de.wikibooks.org/wiki/Collatzfolgen_und_Schachbrett Collatzfolgen und Schachbrett], on Wikibooks | * Klaus Brennecke: ''[https://de.wikibooks.org/wiki/Collatzfolgen_und_Schachbrett Collatzfolgen und Schachbrett]'', on Wikibooks | ||
===Motivation: Patterns in sequences with same length=== | ===Motivation: Patterns in sequences with same length=== | ||
When Collatz sequences are investigated, there are a lot of pairs of adjacent start values with the same sequence length, and with a characteristical neighbourhood of every other value, for example (from [https://oeis.org/A070165 OEIS A070165]): | When Collatz sequences are investigated, there are a lot of pairs of adjacent start values with the same sequence length, and with a characteristical neighbourhood of every other value, for example (from [https://oeis.org/A070165 OEIS A070165]): | ||
Line 14: | Line 14: | ||
+1 *6+4 +1 *6+4 +1 *6+4 +1 *6+4 *6+2 = = ... | +1 *6+4 +1 *6+4 +1 *6+4 +1 *6+4 *6+2 = = ... | ||
143/104: [143 d 430 m 215 d 646 m 323 d 970 m 485 d 1456 m 728 m | 364, 182, 91, ... 10, 5, 16, 8, 4, 2, 1] | 143/104: [143 d 430 m 215 d 646 m 323 d 970 m 485 d 1456 m 728 m | 364, 182, 91, ... 10, 5, 16, 8, 4, 2, 1] | ||
==Collatz roads== | |||
We define a "road" (with 2 parallel "lanes") as a sequence of pairs of elements (in 2 Collatz sequences with adjacent start values, read from right to left). A road is constructed by taking some n (364 in the example, the last common element of the 2 sequences) with n | We define a "road" (with 2 parallel "lanes") as a sequence of pairs of elements (in 2 Collatz sequences with adjacent start values, read from right to left). A road is constructed by taking some n (364 in the example, the last common element of the 2 sequences) with n ≡ 4 mod 6, and by applying the steps | ||
d m m d m d m d ... | d m m d m d m d ... | ||
m m d m d m d m ... | m m d m d m d m ... | ||
in alternating sequence, until one of the elements in the pairs becomes divisible by 3. The construction yields one road with an upper lane (left elements of the pairs) and a lower lane (right elements). | in alternating sequence, until one of the elements in the pairs becomes divisible by 3. The construction yields one road with an upper lane (left elements of the pairs) and a lower lane (right elements), for example: | ||
''364'': (121,728), (242,''1456''), (''484'',485), (161,''970''), (''322'',323), (107,''646''), (''214'',215), (71,''430''), (''142'',143) ... | |||
The elements which are ≡ 4 mod 6 are emphasized. The construction continues until 63 ≡ 0 mod 3: | |||
... (47,''286''), (''94'',95), (31,''190''), (62,63). | |||
For better handling (e.g. in Excel), the roads for all starting values 4, 10, 16, 22 ... 4+6*n are listed as rows in an array: | |||
<table> | |||
<tr align="right"> | |||
<td class="arl">r<sub>0</sub></td> | |||
<td class="arl">r<sub>1</sub></td> | |||
<td class="arl">r<sub>2</sub></td> | |||
<td class="arl">r<sub>3</sub></td> | |||
<td class="arl">r<sub>4</sub></td> | |||
<td class="arl">r<sub>5</sub></td> | |||
<td class="arl">r<sub>6</sub></td> | |||
<td class="arl">r<sub>7</sub></td> | |||
<td class="arl">r<sub>8</sub></td> | |||
<td class="arl">r<sub>9</sub></td> | |||
<td class="arl">r<sub>10</sub></td> | |||
<td class="arl">r<sub>11</sub></td> | |||
<td class="arl">r<sub>12</sub></td> | |||
<td class="arl">r<sub>13</sub></td> | |||
<td class="arl">r<sub>14</sub></td> | |||
<td class="arl">r<sub>15</sub></td> | |||
<td class="arl">...</td> | |||
</tr> | |||
<tr align="right"> | |||
<td class="arr">start</td> | |||
<td class="arr">len</td> | |||
<td class="arr"><strong>d</strong>r<sub>0</sub></td> | |||
<td class="arl"><strong>m</strong>r<sub>0</sub></td> | |||
<td class="arr"><strong>m</strong>r<sub>2</sub></td> | |||
<td class="arl"><strong>m</strong>r<sub>3</sub></td> | |||
<td class="arr"><strong>m</strong>r<sub>4</sub></td> | |||
<td class="arl"><strong>d</strong>r<sub>5</sub></td> | |||
<td class="arr"><strong>d</strong>r<sub>6</sub></td> | |||
<td class="arl"><strong>m</strong>r<sub>7</sub></td> | |||
<td class="arr"><strong>m</strong>r<sub>8</sub></td> | |||
<td class="arl"><strong>d</strong>r<sub>9</sub></td> | |||
<td class="arr"><strong>d</strong>r<sub>10</sub></td> | |||
<td class="arl"><strong>m</strong>r<sub>11</sub></td> | |||
<td class="arr"><strong>m</strong>r<sub>12</sub></td> | |||
<td class="arl"><strong>d</strong>r<sub>13</sub></td> | |||
<td class="arr">...</td> | |||
</tr> | |||
<tr align="right"> | |||
<td class="arr">Δ6</td> | |||
<td class="arr"></td> | |||
<td class="arr">Δ2</td> | |||
<td class="arr">Δ12</td> | |||
<td class="arr">Δ4</td> | |||
<td class="arr">Δ24</td> | |||
<td class="arr">Δ8</td> | |||
<td class="arr">Δ8</td> | |||
<td class="arr">3Δ8</td> | |||
<td class="arr">3Δ48</td> | |||
<td class="arr">3Δ16</td> | |||
<td class="arr">3Δ16</td> | |||
<td class="arr">9Δ16</td> | |||
<td class="arr">9Δ96</td> | |||
<td class="arr">9Δ32</td> | |||
<td class="arr">9Δ32</td> | |||
<td class="arr">...</td> | |||
</tr> | |||
<tr align="right"><td><strong>4</strong></td><td class="arr">5</td><td class="d1">1</td><td class="d2">8</td><td class="d2">2</td><td><strong>16</strong></td><td><strong>4</strong></td><td class="d5">5</td><td class="d1">1</td><td><strong>10</strong></td><td class="d2">2</td><td class="d3">3</td></tr> | |||
<tr align="right"><td><strong>10</strong></td><td class="arr">3</td><td class="d3">3</td><td class="d2">20</td><td class="d0">6</td><td><strong>40</strong></td><td class="d0">12</td><td class="d1">13</td></tr> | |||
<tr align="right"><td><strong>16</strong></td><td class="arr">3</td><td class="d5">5</td><td class="d2">32</td><td><strong>10</strong></td><td><strong>64</strong></td><td class="d2">20</td><td class="d3">21</td></tr> | |||
<tr align="right"><td><strong>22</strong></td><td class="arr">4</td><td class="d1">7</td><td class="d2">44</td><td class="d2">14</td><td><strong>88</strong></td><td><strong>28</strong></td><td class="d5">29</td><td class="d3">9</td><td><strong>58</strong></td></tr> | |||
<tr align="right"><td><strong>28</strong></td><td class="arr">3</td><td class="d3">9</td><td class="d2">56</td><td class="d0">18</td><td><strong>112</strong></td><td class="d0">36</td><td class="d1">37</td></tr> | |||
<tr align="right"><td><strong>34</strong></td><td class="arr">3</td><td class="d5">11</td><td class="d2">68</td><td><strong>22</strong></td><td><strong>136</strong></td><td class="d2">44</td><td class="d3">45</td></tr> | |||
<tr align="right"><td><strong>40</strong></td><td class="arr">9</td><td class="d1">13</td><td class="d2">80</td><td class="d2">26</td><td><strong>160</strong></td><td><strong>52</strong></td><td class="d5">53</td><td class="d5">17</td><td><strong>106</strong></td><td><strong>34</strong></td><td class="d5">35</td><td class="d5">11</td><td><strong>70</strong></td><td><strong>22</strong></td><td class="d5">23</td><td class="d1">7</td><td><strong>46</strong></td><td class="d2">14</td><td class="d3">15</td></tr> | |||
<tr align="right"><td><strong>46</strong></td><td class="arr">3</td><td class="d3">15</td><td class="d2">92</td><td class="d0">30</td><td><strong>184</strong></td><td class="d0">60</td><td class="d1">61</td></tr> | |||
<tr align="right"><td><strong>52</strong></td><td class="arr">3</td><td class="d5">17</td><td class="d2">104</td><td><strong>34</strong></td><td><strong>208</strong></td><td class="d2">68</td><td class="d3">69</td></tr> | |||
<tr align="right"><td><strong>58</strong></td><td class="arr">5</td><td class="d1">19</td><td class="d2">116</td><td class="d2">38</td><td><strong>232</strong></td><td><strong>76</strong></td><td class="d5">77</td><td class="d1">25</td><td><strong>154</strong></td><td class="d2">50</td><td class="d3">51</td></tr> | |||
<tr align="right"><td><strong>64</strong></td><td class="arr">3</td><td class="d3">21</td><td class="d2">128</td><td class="d0">42</td><td><strong>256</strong></td><td class="d0">84</td><td class="d1">85</td></tr> | |||
<tr align="right"><td><strong>70</strong></td><td class="arr">3</td><td class="d5">23</td><td class="d2">140</td><td><strong>46</strong></td><td><strong>280</strong></td><td class="d2">92</td><td class="d3">93</td></tr> | |||
<tr align="right"><td><strong>76</strong></td><td class="arr">4</td><td class="d1">25</td><td class="d2">152</td><td class="d2">50</td><td><strong>304</strong></td><td><strong>100</strong></td><td class="d5">101</td><td class="d3">33</td><td><strong>202</strong></td></tr> | |||
</table> | |||
===Observations=== | |||
In contrast to the usual "chaotic" appearance of Collatz graphs, there is quite an amount of obvious structure in this construction: | |||
* |
Revision as of 18:00, 24 August 2018
Introduction
When all Collatz sequences are read backwards, they form a graph starting with 1, 2 ..., hopefully without cycles (except for 1,2,4,1,2,4 ...). At each node n in the graph, the path starting at the root (4) and with the last node n can in principle be continued to 2 new nodes by a
- "m"-step: n * 2 (which is always possible), or a
- "d"-step: (n - 1) / 3 (which is possible only if n ≡ 1 mod 3).
When n mod 3 = 0, the path will continue with m-steps only, since the duplication maintains the divisibility by 3.
References
- Jeffry C. Lagarias, Ed.: The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010, ISBN 978-8218-4940-8. MBK78
- OEIS A07165: File of first 10K Collatz sequences, ascending start values, with lengths
- Gottfried Helms: The Collatz-Problem. A view into some 3x+1-trees and a new fractal graphic representation. Univ. Kassel.
- Klaus Brennecke: Collatzfolgen und Schachbrett, on Wikibooks
Motivation: Patterns in sequences with same length
When Collatz sequences are investigated, there are a lot of pairs of adjacent start values with the same sequence length, and with a characteristical neighbourhood of every other value, for example (from OEIS A070165):
142/104: [142 m 71 d 214 m 107 d 322 m 161 d 484 m 242 m 121 d | 364, 182, 91, ... 10, 5, 16, 8, 4, 2, 1] +1 *6+4 +1 *6+4 +1 *6+4 +1 *6+4 *6+2 = = ... 143/104: [143 d 430 m 215 d 646 m 323 d 970 m 485 d 1456 m 728 m | 364, 182, 91, ... 10, 5, 16, 8, 4, 2, 1]
Collatz roads
We define a "road" (with 2 parallel "lanes") as a sequence of pairs of elements (in 2 Collatz sequences with adjacent start values, read from right to left). A road is constructed by taking some n (364 in the example, the last common element of the 2 sequences) with n ≡ 4 mod 6, and by applying the steps
d m m d m d m d ... m m d m d m d m ...
in alternating sequence, until one of the elements in the pairs becomes divisible by 3. The construction yields one road with an upper lane (left elements of the pairs) and a lower lane (right elements), for example:
364: (121,728), (242,1456), (484,485), (161,970), (322,323), (107,646), (214,215), (71,430), (142,143) ...
The elements which are ≡ 4 mod 6 are emphasized. The construction continues until 63 ≡ 0 mod 3:
... (47,286), (94,95), (31,190), (62,63).
For better handling (e.g. in Excel), the roads for all starting values 4, 10, 16, 22 ... 4+6*n are listed as rows in an array:
r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9 | r10 | r11 | r12 | r13 | r14 | r15 | ... | |||
start | len | dr0 | mr0 | mr2 | mr3 | mr4 | dr5 | dr6 | mr7 | mr8 | dr9 | dr10 | mr11 | mr12 | dr13 | ... | |||
Δ6 | Δ2 | Δ12 | Δ4 | Δ24 | Δ8 | Δ8 | 3Δ8 | 3Δ48 | 3Δ16 | 3Δ16 | 9Δ16 | 9Δ96 | 9Δ32 | 9Δ32 | ... | ||||
4 | 5 | 1 | 8 | 2 | 16 | 4 | 5 | 1 | 10 | 2 | 3 | ||||||||
10 | 3 | 3 | 20 | 6 | 40 | 12 | 13 | ||||||||||||
16 | 3 | 5 | 32 | 10 | 64 | 20 | 21 | ||||||||||||
22 | 4 | 7 | 44 | 14 | 88 | 28 | 29 | 9 | 58 | ||||||||||
28 | 3 | 9 | 56 | 18 | 112 | 36 | 37 | ||||||||||||
34 | 3 | 11 | 68 | 22 | 136 | 44 | 45 | ||||||||||||
40 | 9 | 13 | 80 | 26 | 160 | 52 | 53 | 17 | 106 | 34 | 35 | 11 | 70 | 22 | 23 | 7 | 46 | 14 | 15 |
46 | 3 | 15 | 92 | 30 | 184 | 60 | 61 | ||||||||||||
52 | 3 | 17 | 104 | 34 | 208 | 68 | 69 | ||||||||||||
58 | 5 | 19 | 116 | 38 | 232 | 76 | 77 | 25 | 154 | 50 | 51 | ||||||||
64 | 3 | 21 | 128 | 42 | 256 | 84 | 85 | ||||||||||||
70 | 3 | 23 | 140 | 46 | 280 | 92 | 93 | ||||||||||||
76 | 4 | 25 | 152 | 50 | 304 | 100 | 101 | 33 | 202 |
Observations
In contrast to the usual "chaotic" appearance of Collatz graphs, there is quite an amount of obvious structure in this construction: