Collatz Streetmap: Difference between revisions

From tehowiki
Jump to navigation Jump to search
imported>Gfis
new descr.
imported>Gfis
No edit summary
Line 1: Line 1:
===Introduction===
==Introduction==
When all Collatz sequences are read backwards, they form a graph starting with 1, 2 ..., hopefully without cycles (except for 1,2,4,1,2,4 ...). At each node n in the graph, the path starting at the root (4) and  with the last node n can in principle be continued to 2 new nodes by a  
When all Collatz sequences are read backwards, they form a graph starting with 1, 2 ..., hopefully without cycles (except for 1,2,4,1,2,4 ...). At each node n in the graph, the path starting at the root (4) and  with the last node n can in principle be continued to 2 new nodes by a  
* "m"-step: n * 2 (which is always possible), or a
* "m"-step: n * 2 (which is always possible), or a
* "d"-step: (n - 1) / 3 (which is possible only if n - 1 mod 3 = 0).
* "d"-step: (n - 1) / 3 (which is possible only if n ≡ 1 mod 3).
When n mod 3 = 0, the path will continue with m-steps only, since the duplication maintains the divisibility by 3.
When n mod 3 = 0, the path will continue with m-steps only, since the duplication maintains the divisibility by 3.
===Literature===
===References===
* Jeffry C. Lagarias, Ed.: ''The Ultimate Challenge: The 3x+1 Problem'', Amer. Math. Soc., 2010, ISBN 978-8218-4940-8. [http://www.ams.org/bookpages/mbk-78 MBK78]
* Jeffry C. Lagarias, Ed.: ''The Ultimate Challenge: The 3x+1 Problem'', Amer. Math. Soc., 2010, ISBN 978-8218-4940-8. [http://www.ams.org/bookpages/mbk-78 MBK78]
* [http://oeis.org/A070165/a070165.txt  File of first 10K Collatz sequences], ascending start values, with lengths
* OEIS A07165: [http://oeis.org/A070165/a070165.txt  File of first 10K Collatz sequences], ascending start values, with lengths
* [http://go.helms-net.de/math/collatz/aboutloop/collatzgraphs.htm The Collatz-Problem]. A view into some 3x+1-trees and a new fractal graphic representation. Gottfried Helms, Univ. Kassel
* Gottfried Helms: ''[http://go.helms-net.de/math/collatz/aboutloop/collatzgraphs.htm The Collatz-Problem]''. A view into some 3x+1-trees and a new fractal graphic representation. Univ. Kassel.
* [https://de.wikibooks.org/wiki/Collatzfolgen_und_Schachbrett Collatzfolgen und Schachbrett], on Wikibooks
* Klaus Brennecke: ''[https://de.wikibooks.org/wiki/Collatzfolgen_und_Schachbrett Collatzfolgen und Schachbrett]'', on Wikibooks
===Motivation: Patterns in sequences with same length===
===Motivation: Patterns in sequences with same length===
When Collatz sequences are investigated, there are a lot of pairs of adjacent start values with the same sequence length, and with a characteristical neighbourhood of every other value, for example (from [https://oeis.org/A070165 OEIS A070165]):
When Collatz sequences are investigated, there are a lot of pairs of adjacent start values with the same sequence length, and with a characteristical neighbourhood of every other value, for example (from [https://oeis.org/A070165 OEIS A070165]):
Line 14: Line 14:
             +1  *6+4    +1  *6+4    +1  *6+4    +1  *6+4  *6+2      =    =  ...
             +1  *6+4    +1  *6+4    +1  *6+4    +1  *6+4  *6+2      =    =  ...
  143/104: [143 d 430 m 215 d 646 m 323 d 970 m 485 d 1456 m 728 m | 364, 182, 91, ... 10, 5, 16, 8, 4, 2, 1]
  143/104: [143 d 430 m 215 d 646 m 323 d 970 m 485 d 1456 m 728 m | 364, 182, 91, ... 10, 5, 16, 8, 4, 2, 1]
===Collatz roads===
==Collatz roads==
We define a "road" (with 2 parallel "lanes") as a sequence of pairs of elements (in 2 Collatz sequences with adjacent start values, read from right to left). A road is constructed by taking some n (364 in the example, the last common element of the 2 sequences) with n = 4 mod 6, and by applying the steps
We define a "road" (with 2 parallel "lanes") as a sequence of pairs of elements (in 2 Collatz sequences with adjacent start values, read from right to left). A road is constructed by taking some n (364 in the example, the last common element of the 2 sequences) with n ≡ 4 mod 6, and by applying the steps
  d m m d m d m d ...  
  d m m d m d m d ...  
  m m d m d m d m ...
  m m d m d m d m ...
in alternating sequence, until one of the elements in the pairs becomes divisible by 3. The construction yields one road with an upper lane (left elements of the pairs) and a lower lane (right elements). In the first attempt one can construct the roads for all starting values 4, 10, 16, 22 ... 4+6*n, and list them as rows with lists of pairs:
in alternating sequence, until one of the elements in the pairs becomes divisible by 3. The construction yields one road with an upper lane (left elements of the pairs) and a lower lane (right elements), for example:
''364'': (121,728), (242,''1456''), (''484'',485), (161,''970''), (''322'',323), (107,''646''), (''214'',215), (71,''430''), (''142'',143) ...
The elements which are ≡ 4 mod 6 are emphasized. The construction continues until 63 ≡ 0 mod 3:
... (47,''286''), (''94'',95), (31,''190''), (62,63).
For better handling (e.g. in Excel), the roads for all starting values 4, 10, 16, 22 ... 4+6*n are listed as rows in an array:
<table>
<tr align="right">
<td class="arl">r<sub>0</sub></td>
<td class="arl">r<sub>1</sub></td>
<td class="arl">r<sub>2</sub></td>
<td class="arl">r<sub>3</sub></td>
<td class="arl">r<sub>4</sub></td>
<td class="arl">r<sub>5</sub></td>
<td class="arl">r<sub>6</sub></td>
<td class="arl">r<sub>7</sub></td>
<td class="arl">r<sub>8</sub></td>
<td class="arl">r<sub>9</sub></td>
<td class="arl">r<sub>10</sub></td>
<td class="arl">r<sub>11</sub></td>
<td class="arl">r<sub>12</sub></td>
<td class="arl">r<sub>13</sub></td>
<td class="arl">r<sub>14</sub></td>
<td class="arl">r<sub>15</sub></td>
<td class="arl">...</td>
</tr>
<tr align="right">
<td class="arr">start</td>
<td class="arr">len</td>
<td class="arr"><strong>d</strong>r<sub>0</sub></td>
<td class="arl"><strong>m</strong>r<sub>0</sub></td>
<td class="arr"><strong>m</strong>r<sub>2</sub></td>
<td class="arl"><strong>m</strong>r<sub>3</sub></td>
<td class="arr"><strong>m</strong>r<sub>4</sub></td>
<td class="arl"><strong>d</strong>r<sub>5</sub></td>
<td class="arr"><strong>d</strong>r<sub>6</sub></td>
<td class="arl"><strong>m</strong>r<sub>7</sub></td>
<td class="arr"><strong>m</strong>r<sub>8</sub></td>
<td class="arl"><strong>d</strong>r<sub>9</sub></td>
<td class="arr"><strong>d</strong>r<sub>10</sub></td>
<td class="arl"><strong>m</strong>r<sub>11</sub></td>
<td class="arr"><strong>m</strong>r<sub>12</sub></td>
<td class="arl"><strong>d</strong>r<sub>13</sub></td>
<td class="arr">...</td>
</tr>
<tr align="right">
<td class="arr">&#x394;6</td>
<td class="arr"></td>
<td class="arr">&#x394;2</td>
<td class="arr">&#x394;12</td>
<td class="arr">&#x394;4</td>
<td class="arr">&#x394;24</td>
<td class="arr">&#x394;8</td>
<td class="arr">&#x394;8</td>
<td class="arr">3&#x394;8</td>
<td class="arr">3&#x394;48</td>
<td class="arr">3&#x394;16</td>
<td class="arr">3&#x394;16</td>
<td class="arr">9&#x394;16</td>
<td class="arr">9&#x394;96</td>
<td class="arr">9&#x394;32</td>
<td class="arr">9&#x394;32</td>
<td class="arr">...</td>
</tr>
<tr align="right"><td><strong>4</strong></td><td class="arr">5</td><td class="d1">1</td><td class="d2">8</td><td class="d2">2</td><td><strong>16</strong></td><td><strong>4</strong></td><td class="d5">5</td><td class="d1">1</td><td><strong>10</strong></td><td class="d2">2</td><td class="d3">3</td></tr>
<tr align="right"><td><strong>10</strong></td><td class="arr">3</td><td class="d3">3</td><td class="d2">20</td><td class="d0">6</td><td><strong>40</strong></td><td class="d0">12</td><td class="d1">13</td></tr>
<tr align="right"><td><strong>16</strong></td><td class="arr">3</td><td class="d5">5</td><td class="d2">32</td><td><strong>10</strong></td><td><strong>64</strong></td><td class="d2">20</td><td class="d3">21</td></tr>
<tr align="right"><td><strong>22</strong></td><td class="arr">4</td><td class="d1">7</td><td class="d2">44</td><td class="d2">14</td><td><strong>88</strong></td><td><strong>28</strong></td><td class="d5">29</td><td class="d3">9</td><td><strong>58</strong></td></tr>
<tr align="right"><td><strong>28</strong></td><td class="arr">3</td><td class="d3">9</td><td class="d2">56</td><td class="d0">18</td><td><strong>112</strong></td><td class="d0">36</td><td class="d1">37</td></tr>
<tr align="right"><td><strong>34</strong></td><td class="arr">3</td><td class="d5">11</td><td class="d2">68</td><td><strong>22</strong></td><td><strong>136</strong></td><td class="d2">44</td><td class="d3">45</td></tr>
<tr align="right"><td><strong>40</strong></td><td class="arr">9</td><td class="d1">13</td><td class="d2">80</td><td class="d2">26</td><td><strong>160</strong></td><td><strong>52</strong></td><td class="d5">53</td><td class="d5">17</td><td><strong>106</strong></td><td><strong>34</strong></td><td class="d5">35</td><td class="d5">11</td><td><strong>70</strong></td><td><strong>22</strong></td><td class="d5">23</td><td class="d1">7</td><td><strong>46</strong></td><td class="d2">14</td><td class="d3">15</td></tr>
<tr align="right"><td><strong>46</strong></td><td class="arr">3</td><td class="d3">15</td><td class="d2">92</td><td class="d0">30</td><td><strong>184</strong></td><td class="d0">60</td><td class="d1">61</td></tr>
<tr align="right"><td><strong>52</strong></td><td class="arr">3</td><td class="d5">17</td><td class="d2">104</td><td><strong>34</strong></td><td><strong>208</strong></td><td class="d2">68</td><td class="d3">69</td></tr>
<tr align="right"><td><strong>58</strong></td><td class="arr">5</td><td class="d1">19</td><td class="d2">116</td><td class="d2">38</td><td><strong>232</strong></td><td><strong>76</strong></td><td class="d5">77</td><td class="d1">25</td><td><strong>154</strong></td><td class="d2">50</td><td class="d3">51</td></tr>
<tr align="right"><td><strong>64</strong></td><td class="arr">3</td><td class="d3">21</td><td class="d2">128</td><td class="d0">42</td><td><strong>256</strong></td><td class="d0">84</td><td class="d1">85</td></tr>
<tr align="right"><td><strong>70</strong></td><td class="arr">3</td><td class="d5">23</td><td class="d2">140</td><td><strong>46</strong></td><td><strong>280</strong></td><td class="d2">92</td><td class="d3">93</td></tr>
<tr align="right"><td><strong>76</strong></td><td class="arr">4</td><td class="d1">25</td><td class="d2">152</td><td class="d2">50</td><td><strong>304</strong></td><td><strong>100</strong></td><td class="d5">101</td><td class="d3">33</td><td><strong>202</strong></td></tr>
</table>
===Observations===
In contrast to the usual "chaotic" appearance of Collatz graphs, there is quite an amount of obvious structure in this construction:
*

Revision as of 18:00, 24 August 2018

Introduction

When all Collatz sequences are read backwards, they form a graph starting with 1, 2 ..., hopefully without cycles (except for 1,2,4,1,2,4 ...). At each node n in the graph, the path starting at the root (4) and with the last node n can in principle be continued to 2 new nodes by a

  • "m"-step: n * 2 (which is always possible), or a
  • "d"-step: (n - 1) / 3 (which is possible only if n ≡ 1 mod 3).

When n mod 3 = 0, the path will continue with m-steps only, since the duplication maintains the divisibility by 3.

References

Motivation: Patterns in sequences with same length

When Collatz sequences are investigated, there are a lot of pairs of adjacent start values with the same sequence length, and with a characteristical neighbourhood of every other value, for example (from OEIS A070165):

142/104: [142 m  71 d 214 m 107 d 322 m 161 d 484 m  242 m 121 d | 364, 182, 91, ... 10, 5, 16, 8, 4, 2, 1]
           +1  *6+4    +1  *6+4    +1  *6+4    +1   *6+4  *6+2      =    =  ...
143/104: [143 d 430 m 215 d 646 m 323 d 970 m 485 d 1456 m 728 m | 364, 182, 91, ... 10, 5, 16, 8, 4, 2, 1]

Collatz roads

We define a "road" (with 2 parallel "lanes") as a sequence of pairs of elements (in 2 Collatz sequences with adjacent start values, read from right to left). A road is constructed by taking some n (364 in the example, the last common element of the 2 sequences) with n ≡ 4 mod 6, and by applying the steps

d m m d m d m d ... 
m m d m d m d m ...

in alternating sequence, until one of the elements in the pairs becomes divisible by 3. The construction yields one road with an upper lane (left elements of the pairs) and a lower lane (right elements), for example:

364: (121,728), (242,1456), (484,485), (161,970), (322,323), (107,646), (214,215), (71,430), (142,143) ...

The elements which are ≡ 4 mod 6 are emphasized. The construction continues until 63 ≡ 0 mod 3:

... (47,286), (94,95), (31,190), (62,63).

For better handling (e.g. in Excel), the roads for all starting values 4, 10, 16, 22 ... 4+6*n are listed as rows in an array:

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 ...
start len dr0 mr0 mr2 mr3 mr4 dr5 dr6 mr7 mr8 dr9 dr10 mr11 mr12 dr13 ...
Δ6 Δ2 Δ12 Δ4 Δ24 Δ8 Δ8 3Δ8 3Δ48 3Δ16 3Δ16 9Δ16 9Δ96 9Δ32 9Δ32 ...
45182164511023
1033206401213
16353210642021
22474414882829958
283956181123637
3431168221364445
4091380261605253171063435117022237461415
4631592301846061
52317104342086869
58519116382327677251545051
64321128422568485
70323140462809293
764251525030410010133202

Observations

In contrast to the usual "chaotic" appearance of Collatz graphs, there is quite an amount of obvious structure in this construction: