OEIS/3x+1 Problem: Difference between revisions

From tehowiki
Jump to navigation Jump to search
imported>Gfis
(C9a), and compressed tree
imported>Gfis
new after m-f contact
Line 1: Line 1:
==Abstract==
With the operations defined by Collatz for his ''3x + 1'' problem, two sets of special, finite trees are constructed. It is shown that these trees contain all numbers, and that the can be combined to form bigger trees by an iterative process. This process is repeated on four levels, until it is finally shown that all remaining trees can be combined into one tree which contains all natural numbers, and which is free of cycles (except for the cycle 4-2-1).
==Introduction==
==Introduction==
'''Collatz sequences''' (also called  ''trajectories'') are sequences of integer numbers > 0. For any start value > 0 the elements of the sequence are constructed with two simple rules:
'''Collatz sequences''' (also called  ''trajectories'') are sequences of integer numbers > 0. For some start value > 0 the elements of a particular sequence are constructed with two simple rules:
# Even numbers are halved.
# Even numbers are halved.
# Odd numbers are multiplied by 3 and then incremented by 1.  
# Odd numbers are multiplied by 3 and then incremented by 1.
Since decades it is unknown whether the final cyle 4 - 2 - 1 is always reached for all start values. This problem is the '''Collatz conjecture''', for which the [https://en.wikipedia.org/wiki/Collatz_conjecture english Wikipedia] states:  
Since decades it is unknown whether the final cyle 4 - 2 - 1 is always reached for all start values. This problem is the '''Collatz conjecture''', for which the [https://en.wikipedia.org/wiki/Collatz_conjecture English Wikipedia] states:
: It is also known as the 3n + 1 conjecture, the Ulam conjecture (after Stanisław Ulam), Kakutani's problem (after Shizuo Kakutani), the Thwaites conjecture (after Sir Bryan Thwaites), Hasse's algorithm (after Helmut Hasse), or the Syracuse problem; the sequence of numbers involved is referred to as the hailstone sequence or hailstone numbers (because the values are usually subject to multiple descents and ascents like hailstones in a cloud), or as wondrous numbers.
: It is also known as the 3n + 1 conjecture, the Ulam conjecture (after Stanisław Ulam), Kakutani's problem (after Shizuo Kakutani), the Thwaites conjecture (after Sir Bryan Thwaites), Hasse's algorithm (after Helmut Hasse), or the Syracuse problem; the sequence of numbers involved is referred to as the hailstone sequence or hailstone numbers (because the values are usually subject to multiple descents and ascents like hailstones in a cloud), or as wondrous numbers.


Straightforward visualizations of Collatz sequences show no obvious structure. The sequences for the first dozen of start values are rather short, but the sequence for 27 suddenly has 112 elements.  
Simple visualizations of Collatz sequences show no obvious structure. The sequences for the first dozen of start values are rather short, but the sequence for 27 suddenly has 112 elements.
<p align="right">''Da sieht man den Wald vor lauter B&auml;men nicht.''<br />German proverb: ''You cannot see the wood for the trees.''
</p>
===References===
===References===
* Jeffry C. Lagarias, Ed.: ''The Ultimate Challenge: The 3x+1 Problem'', Amer. Math. Soc., 2010, ISBN 978-8218-4940-8. [http://www.ams.org/bookpages/mbk-78 MBK78]
* Jeffry C. Lagarias, Ed.: ''The Ultimate Challenge: The 3x+1 Problem'', Amer. Math. Soc., 2010, ISBN 978-8218-4940-8. [http://www.ams.org/bookpages/mbk-78 MBK78]
* OEIS A07165: [http://oeis.org/A070165/a070165.txt  File of first 10K Collatz sequences], ascending start values, with lengths
* OEIS A07165: [http://oeis.org/A070165/a070165.txt  File of first 10K Collatz sequences], ascending start values, with lengths
* Manfred Trümper: ''The Collatz Problem in the Light of an Infinite Free Semigroup''. Chinese Journal of Mathematics, Vol. 2014, [http://dx.doi.org/10.1155/2014/756917 Article ID 756917], 21 p.
* Manfred Tr&uuml;mper: ''The Collatz Problem in the Light of an Infinite Free Semigroup''. Chinese Journal of Mathematics, Vol. 2014, [http://dx.doi.org/10.1155/2014/756917 Article ID 756917], 21 p.
 
==Collatz Graph==
==Collatz Graph==
When all Collatz sequences are read backwards, they form the '''Collatz graph''' starting with 1, 2, 4, 8 ... . At each node m > 4 in the graph, the path from the root (4) can be continued
When all Collatz sequences are read backwards, they form the '''Collatz graph''' starting with 1, 2, 4, 8 ... . At each node ''n &gt; 4'' in the graph, the path from the root (4) can be continued
* always to m * 2, and  
* always to ''n * 2'', and
* to (m - 1) / 3 if m &#x2261; 1 mod 3.
* to ''(n - 1) / 3'' if ''n &#x2261; 1 mod 3''.
The Collatz conjecture claims that the graphs contains all numbers, and that - except for the trivial, leading cycle 1 - 2 - 4 - 1 - 2 - 4 ... - it has the form of a tree (without cycles). We will not consider the trivial cycle, and we start the graph with node 4, the '''root'''.  
 
Moreover, another trivial type of path starts when m &#x2261; 0 mod 3. We call such a path  a ''sprout'', and it contains duplications only. A sprout must be added to the graph for any node divisible by 3, therefore we will not consider them for the moment.
The Collatz conjecture claims that the Collatz graph
* contains all numbers,
and that it - except for the leading cycle 1 - 2 - 4 - 1 - 2 - 4 ... -
* has the form of a tree (without cycles).
We will not consider the leading cycle, and we start the graph with node 4, the '''root'''.
Furthermore we observe that a path can be continued with duplications only once it reaches a node ''n &#x2261; 0 mod 3''. We omit these trivial continuations.
===Graph Operations===
===Graph Operations===
Following [http://dx.doi.org/10.1155/2014/756917 Trümper], we use abbreviations for the elementary operations which transform a node (element, number) in the Collatz graph according to the following table (T1):
Following [http://dx.doi.org/10.1155/2014/756917 Tr&uuml;mper], we use abbreviations for the elementary '''operations''' which map a node (element, number) ''n'' in the Collatz graph to the a neighbouring node as shown in the following table (T1):
{| class="wikitable" style="text-align:center"
{| class="wikitable" style="text-align:center"
!Name    !! Mnemonic !! Distance to root !! Mapping           !! Condition        
!Name    !! Mnemonic   !! Distance to root !! Mapping                   !! Condition
|-
|-
| d      || down      || -1           || m &#x21a6; m / 2          || m &#x2261; 0 mod 2
| d      || "down"     || -1               || n &#x21a6; n / 2          || n &#x2261; 0 mod 2
|-
|-
| u      || up        || -1           || m &#x21a6; 3 * m + 1      || (m &#x2261; 1 mod 2)            
| u      || "up"       || -1               || n &#x21a6; 3 * n + 1      || (none)
|-
|-
| s := ud || spike    || -2           || m &#x21a6; (3 * m + 1) / 2) || m &#x2261; 1 mod 2            
| s := ud || "spike"     || -2               || n &#x21a6; (3 * n + 1) / 2)|| n &#x2261; 1 mod 2
|-
|-
| &delta; || divide    || +1           || m &#x21a6; (m - 1) / 3    || m &#x2261; 1 mod 3    
| &delta; || "divide"   || +1               || n &#x21a6; (n - 1) / 3    || n &#x2261; 1 mod 3
|-
|-
| &micro; || multiply  || +1           || m &#x21a6; m * 2          || (none)
| &micro; || "multiply" || +1               || n &#x21a6; n * 2          || (none)
|-
|-
| &sigma; := &delta;&micro;|| squeeze || +2 || m &#x21a6; ((m - 1) / 3) * 2 || m &#x2261; 1 mod 3  
| &sigma; := &delta;&micro;|| "squeeze" || +2 ||n &#x21a6; ((n - 1) / 3) * 2|| n &#x2261; 1 mod 3
|}
|}
We will mainly be interested in the reverse mappings (denoted with greek letters) which move away from the root of the graph.
The operations will be noted as ''infix'' operators, with the source node as left operand and the target node as right operand, for example ''10 &delta;&micro; 6''. In the following, we will mainly be interested in the reverse mappings (denoted with greek letters) which move away from the root 4 of the graph.
===3-by-2 Replacement===
 
The &sigma; operation, applied to numbers of the form 6 * m - 2, has an interesting property:
(6 * (3 * n) - 2) &sigma; = 4 * 3 * n - 2 =  6 * (2 * n) - 2
In other words, as long as m contains a factor 3, the &sigma; operation maintains the form 6 * x - 2, and it  replaces the factor 3 by 2 (it "squeezes" a 3 into a 2). In the opposite direction, the s operation replaces a factor 2 in m by 3.
<!--
=== Trivial paths===
There are two types of paths whose descriptions are very simple:
(n = 2<sup>k</sup>) ddd ... d 8 d 4 d 2 d 1  - powers of 2
(n &#x2261; 0 mod 3) uuu ... u (n * 2<sup>k</sup>) ... - multiples of 3
===Kernels===
By the ''kernel'' of a number n = 6 * m - 2 we denote the "2-3-free" factor of m, that is the factor which remains when all powers of 2 and 3 have been removed from m.
* The kernel is not affected by &sigma; and s operations.
-->
===Motivation: Patterns in sequences with the same length===
===Motivation: Patterns in sequences with the same length===
A closer look at the Collatz sequences shows a lot of pairs of adjacent start values which have the same sequence length, for example (from [https://oeis.org/A070165 OEIS A070165]):
A closer look at the Collatz sequences shows a lot of pairs of adjacent start values which have the same sequence length, for example (from [https://oeis.org/A070165 OEIS A070165]):
  142/104: 142 d  71 u 214 d 107 u 322 d 161 u 484 d  242 d 121 u 364 ] 182, 91, ... 4, 2, 1
  142/104: 142 d  71 u 214 d 107 u 322 d 161 u 484 d  242 d 121 u 364 ] d 182 ... 4 d 2 d 1
  143/104: 143 u 430 d 215 u 646 d 323 u 970 d 485 u 1456 d 728 d 364 ] 182, 91, ... 4, 2, 1
  143/104: 143 u 430 d 215 u 646 d 323 u 970 d 485 u 1456 d 728 d 364 ] d 182 ... 4 d 2 d 1
            +1  *6+4    +1  *6+4    +1  *6+4    +1  *6+4  *6+2    +0    +0 ...
The alternating pattern of operations can be continued to the left with additional pairs of steps:
The third line tells how the second line could be computed from the first.
   n? u [ 62 d  31 u  94 d  47 u 142 d ...
Walking from right to left, the step pattern is:
&delta; &micro; &micro; &delta; &micro; &delta; &micro; &delta; &micro;
&micro; &micro; &delta; &micro; &delta; &micro; &delta; &micro; &delta;
The alternating pattern of operations can be continued to the left with 4 additional pairs of steps:
   q? u [ 62 d  31 u  94 d  47 u 142 d ...
  126 d [ 63 u 190 d  95 u 286 d 143 u ...
  126 d [ 63 u 190 d  95 u 286 d 143 u ...
        +1  *6+4    +1  *6+4    +1 
The pattern stops here since there is no integer ''n'' such that ''n * 3 + 1 = 62''.
The pattern stops here since there is no number q such that q * 3 + 1 = 62.  
Beginning at some node (364 &#x2261; 4 mod 6 in the example), these sequences join and follow the same path down to the root 4. The two differing parts of the sequences show a regular pattern. Proceeding from right to left, and thereby using the inverse operations, we see the following operations:
364 &delta; 121 &micro;  242 &micro; 484 &delta; 161 &micro; 322 &delta; 107 &micro; 214 &delta;  71 &micro; 142 &delta;  47 &micro;  94 &delta;  31 &micro; 62
364 &micro; 728 &micro; 1456 &delta; 485 &micro; 970 &delta; 323 &micro; 646 &delta; 215 &micro; 430 &delta; 143 &micro; 286 &delta;  95 &micro; 190 &delta; 63


==Segment Construction==
==Segments==
These patterns lead us to the construction of special subsets of paths in the Collatz graph which we call ''segments''. They lead away from the root, and they always start with a node m &#x2261; -2 mod 6. Then they split and follow two subpaths in a prescribed sequence of operations. The segment construction process is stopped when the next node in one of the two subpaths becomes divisible by 3, resp. when a &delta; operation is no more possible. We assemble the segments as rows of an infinite array <nowiki>C[i,j]</nowiki>, the so-called ''segment directory''.
These patterns lead us to the construction of special subsets of paths in the Collatz graph which we call '''segments'''. Starting at some node ''n &#x2261; 4 mod 6'', the ''fork'', two subpaths lead away from the root in a prescribed, finite sequence of operations.
: Informally, and in the two examples above, we consider the terms betweeen the square brackets. For the moment, we only take those which are which are &#x2261; 4 mod 6 (for "compressed" segments, below there are also "detailed" segments where we take all). We start at the right and with the lower line, and we interleave the terms &#x2261; 4 mod 6 of the two lines to get a segment.  
:The nodes ''n &#x2261; 4 mod 6'' play a special role because they are the only ones for which both a &delta; and a &micro; operation is possible.
The columns in one row i of the array C are constructed as described in the following table (T2):
 
===Segment Construction Rules===
Informally, the segments are constructed beginning at the fork with a few differing operations, followed by a sequence of &sigma; operations in both subpaths.
 
The segment construction process stops when the next node in one of the two subpaths becomes divisible by 3, i.e. when a &delta; (resp. &sigma;) operation is no more possible. We will show that this is always the case.
 
===&sigma; replaces 3 by 2===
The &sigma; operation, when applied to fork nodes of the form ''6i - 2'' with ''i = 3k'', has the interesting property that it maintains the general form ''6n - 2'':
6(3k) - 2 &sigma; (2(3k) - 1) * 2 = 12k - 2 = 6(2k) - 2
That means that &sigma; replaces one factor 3 by a factor 2 (it "squeezes" a 3 into a 2). In the opposite direction, the ''s ("spike")'' operation replaces one factor 2 in ''i'' by a factor 3.
In the same way we could have used the form ''6n + 4'' with ''i = 3k - 1'':
6(3k - 1) + 4 &sigma; (2 * (3k - 1) + 1) * 2 = 12k - 4 + 2 = 6(2k - 1) + 4
Whether the resulting formulas are more simple may be a matter of taste. We use the previous form ''6n - 2'' in the rest of this article.
 
With this property it is easy to state:
* (S??) For any possible fork node, the corresponding segment is of finite length.
:: The length of the segment is proportional to the power of 3 contained in the factor ''i'' of the fork node, which is finite.
 
===Segment Directory Construction===
For the presentation of various properties of the segments, we use a linearized notation of the two subpaths.
We list the segments for all possible fork nodes of the form ''6i - 2, i &gt; 0'' as rows of an infinite array ''<nowiki>C[i, j]</nowiki>'' which we call the '''segment directory'''.
 
The following table '''(T2)''' tells how the columns ''j'' in one row ''i'' of ''C'' must be constructed if the condition is fulfilled:  
{| class="wikitable" style="text-align:left"
{| class="wikitable" style="text-align:left"
!Column j                 !! Operation               !! Formula                  !! Condition            !! Sequence         
!Column j               !! Operation                   !! Formula                  !! Condition            !! First elements
|-
|-
| 1 ||                                               || 6 * i - 2               ||                      || 4, 10, 16, 22, 28, ...
| 1 || <nowiki>C[i, 1]</nowiki>                        || 6 * i - 2               ||                      || 4, 10, 16, 22, 28 ...
|-
|-
| 2 || <nowiki>C[i,1]</nowiki> &micro;&micro;        || 24 * (i - 1)   + 16     ||                      || 16, 40, 64, 88, 112, ...  
| 2 || <nowiki>C[i, 1]</nowiki> &micro;&micro;        || 24 * (i - 1) / 1    + 16||                      || 16, 40, 64, 88, 112 ...
|-                                                                           
| 3 || <nowiki>C[i, 1]</nowiki> &delta;&micro;&micro;  || 24 * (i - 1) / 3    +  4|| i &#x2261; 1 mod 3  ||  4, 28, 52, 76, 100 ...
|-                                                                           
| 4 || <nowiki>C[i, 2]</nowiki> &sigma;                || 48 * (i - 1) / 3    + 10|| i &#x2261; 1 mod 3  || 10, 58, 106, 134 ...
|-                                                                           
| 5 || <nowiki>C[i, 3]</nowiki> &sigma;                || 48 * (i - 7) / 9    + 34|| i &#x2261; 7 mod 9  || 34, 82, 130, 178 ...
|-                                                                           
| 6 || <nowiki>C[i, 4]</nowiki> &sigma;                || 96 * (i - 7) / 9    + 70|| i &#x2261; 7 mod 9  || 70, 166, 262, 358 ...
|-                                                                           
| 7 || <nowiki>C[i, 5]</nowiki> &sigma;                || 96 * (i - 7) / 27    + 22|| i &#x2261; 7 mod 27  || 22, 118, 214, 310 ...
|-                                                                           
| 8 || <nowiki>C[i, 6]</nowiki> &sigma;                || 192 * (i - 7) / 27  + 46|| i &#x2261; 7  mod 27 || 46, 238, 430, 622 ...
|-
|-
| 3 || <nowiki>C[i,1]</nowiki> &delta;&micro;&micro;  || 24 * (i - 1) / 3 + 4    || i &#x2261; 1 mod || 4, 28, 52, 76, 100, ...
| 9 || <nowiki>C[i, 7]</nowiki> &sigma;               || 192 * (i - 61) / 81 + 142|| i &#x2261; 61 mod 81 || 142, 334 ...
|-
|-
| 4 || <nowiki>C[i,2]</nowiki> &sigma;                || 48 * (i - 1) / 3 + 10    || i &#x2261; 1 mod 3  || 10, 58, 106, 134, ...  
|...|| ... || ... || ... || ...
|-
|-
| 5 || <nowiki>C[i,3]</nowiki> &sigma;               || 48 * (i - 7) / 9 + 34    || i &#x2261; 7 mod 9  || 34, 82, 130, 178, ... 
| j || <nowiki>C[i, j-2]</nowiki> &sigma;             || 6 * 2<sup>k+1</sup> * (i - m) / 3<sup>l</sup> + 3 * 2<sup>k</sup> * h - 2 || i &#x2261; m mod 3<sup>l</sup> || ...
|-
| 6 || <nowiki>C[i,2]</nowiki> &sigma;&sigma;        || 96 * (i - 7) / 9 + 70    || i &#x2261; 7 mod 9  || 70, 166, 262, 358, ...
|-
| 7 || <nowiki>C[i,3]</nowiki> &sigma;&sigma;        || 96 * (i - 7) / 27 + 22  || i &#x2261; 7 mod 27  || 22, 118, 214, 310, ...
|-
| 8 || <nowiki>C[i,2]</nowiki> &sigma;&sigma;&sigma;  || 192 * (i - 7) / 27  + 46 || i &#x2261; mod 27 || 46, 238, 430, 622, ...
|-
| 9 || <nowiki>C[i,3]</nowiki> &sigma;&sigma;&sigma;  || 192 * (i - 61) / 81 + 142|| i &#x2261; 61 mod 81 || 142, 334, ...       
|-
| ... || ... || ... || ... || ...  
|-
|-
|}
|}
The first column(s) <nowiki>C[i,1]</nowiki> will be denoted as the '''left side''' of the segment (or of the whole directory), while the columns <nowiki>C[i,j], j &gt; 1</nowiki> will be the '''right part'''. The first few lines of the segment directory are the following:
The general formula for a column ''j >= 4'' uses the following parameters:
* ''k = floor(j / 2)''
* ''l = floor(j - 1) / 2)''
* ''m = a(floor((j - 1) / 4)'',  where ''a(n)'' is the OEIS sequence ([http://oeis.org/A066443 A066443]: ''a(0) = 1; a(n) = 9 * a(n-1) - 2 for n &gt; 0'' . The values are the indexes 1, 7, 61, 547, 4921 ... of the variable length segments with left sides (4), 40, 364, 3280, 29524 ([http://oeis.org/A191681 OEIS A191681]). The constants appear first in columns 2-4 (in segment 1), 5-8 (in segment 7), 9-12 (in segment 61) and so on
* ''h = a(j)'', where ''a(n)'' is the OEIS sequence [http://oeis.org/A084101 A084101] with period 4: ''a(0..3) = 1, 3, 3, 1; a(n) = a(n - 4) for n &gt; 3''.
(This results in ''k = 2, l = 1, m = 1, h = 1 for j = 4''.)
 
The first few lines of the segment directory are the following:


<table style="border-collapse: collapse; ">
<table style="border-collapse: collapse;>
<tr>
<tr>
<td style="text-align:center"> </td>
<td style="text-align:center"> </td>
<td style="text-align:center">1</td>
<td style="text-align:center">&nbsp;1&nbsp;</td>
<td style="text-align:center">2</td>
<td style="text-align:center">&nbsp;2&nbsp;</td>
<td style="text-align:center">3</td>
<td style="text-align:center">&nbsp;3&nbsp;</td>
<td style="text-align:center">4</td>
<td style="text-align:center">&nbsp;4&nbsp;</td>
<td style="text-align:center">5</td>
<td style="text-align:center">&nbsp;5&nbsp;</td>
<td style="text-align:center">6</td>
<td style="text-align:center">&nbsp;6&nbsp;</td>
<td style="text-align:center">7</td>
<td style="text-align:center">&nbsp;7&nbsp;</td>
<td style="text-align:center">8</td>
<td style="text-align:center">&nbsp;8&nbsp;</td>
<td style="text-align:center">9</td>
<td style="text-align:center">&nbsp;9&nbsp;</td>
<td style="text-align:center">10</td>
<td style="text-align:center">&nbsp;10&nbsp;</td>
<td style="text-align:center">11</td>
<td style="text-align:center">&nbsp;11&nbsp;</td>
<td style="text-align:center">...</td>
<td style="text-align:center">...</td>
<td style="text-align:center">2*j</td>
<td style="text-align:center">2*j</td>
Line 128: Line 154:
<td style="border:1px solid gray;text-align:right" >&delta;&micro;&micro;&sigma;<sup>j-1</sup></td>
<td style="border:1px solid gray;text-align:right" >&delta;&micro;&micro;&sigma;<sup>j-1</sup></td>
</tr>
</tr>
<tr><td>&nbsp;&nbsp;1&nbsp;&nbsp;</td><td style="border:1px solid gray;text-align:right" >&nbsp; 4&nbsp;</td><td style="border:1px solid gray;text-align:right" >&nbsp;16&nbsp;</td><td style="border:1px solid gray;text-align:right"  title="1.0:0" id="4" class="d4 bor seg">&nbsp;4&nbsp;</td><td style="border:1px solid gray;text-align:right"  title="1.1:0" id="10" class="d4 bor seg">&nbsp;10&nbsp;</td></tr>
<tr><td align="center">&nbsp;1&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip;">&nbsp; 4&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip; font-weight:bold;" >&nbsp; 16&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip; font-weight:bold;">&nbsp;4&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip; font-weight:bold;">&nbsp;10&nbsp;</td></tr>
<tr><td>&nbsp;&nbsp;2&nbsp;&nbsp;</td><td style="border:1px solid gray;text-align:right" >&nbsp;10&nbsp;</td><td style="border:1px solid gray;text-align:right" >&nbsp;40&nbsp;</td></tr>
<tr><td align="center">&nbsp;2&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip;">&nbsp;10&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip; font-weight:bold;" >&nbsp; 40&nbsp;</td></tr>
<tr><td>&nbsp;&nbsp;3&nbsp;&nbsp;</td><td style="border:1px solid gray;text-align:right" >&nbsp;16&nbsp;</td><td style="border:1px solid gray;text-align:right" >&nbsp;64&nbsp;</td></tr>
<tr><td align="center">&nbsp;3&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip;">&nbsp;16&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip; font-weight:bold;" >&nbsp; 64&nbsp;</td></tr>
<tr><td>&nbsp;&nbsp;4&nbsp;&nbsp;</td><td style="border:1px solid gray;text-align:right" >&nbsp;22&nbsp;</td><td style="border:1px solid gray;text-align:right" >&nbsp;88&nbsp;</td><td style="border:1px solid gray;text-align:right"  title="5.0:0" id="28" class="d4 bor seg">&nbsp;28&nbsp;</td><td style="border:1px solid gray;text-align:right"  title="5.1:0" id="58" class="d4 bor seg">&nbsp;58&nbsp;</td></tr>
<tr><td align="center">&nbsp;4&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip;">&nbsp;22&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip; font-weight:bold;" >&nbsp; 88&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip; font-weight:bold;">&nbsp;28&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip; font-weight:bold;">&nbsp;58&nbsp;</td></tr>
<tr><td>&nbsp;&nbsp;5&nbsp;&nbsp;</td><td style="border:1px solid gray;text-align:right" >&nbsp;28&nbsp;</td><td style="border:1px solid gray;text-align:right" >&nbsp;112&nbsp;</td></tr>
<tr><td align="center">&nbsp;5&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip;">&nbsp;28&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip; font-weight:bold;" >&nbsp;112&nbsp;</td></tr>
<tr><td>&nbsp;&nbsp;6&nbsp;&nbsp;</td><td style="border:1px solid gray;text-align:right" >&nbsp;34&nbsp;</td><td style="border:1px solid gray;text-align:right" >&nbsp;136&nbsp;</td></tr>
<tr><td align="center">&nbsp;6&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip;">&nbsp;34&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip; font-weight:bold;" >&nbsp;136&nbsp;</td></tr>
<tr><td>&nbsp;&nbsp;7&nbsp;&nbsp;</td><td style="border:1px solid gray;text-align:right" >&nbsp;40&nbsp;</td><td style="border:1px solid gray;text-align:right" >&nbsp;160&nbsp;</td><td style="border:1px solid gray;text-align:right"  title="1.0:2" id="52" class="d4 bor seg">&nbsp;52&nbsp;</td><td style="border:1px solid gray;text-align:right"  title="1.1:2" id="106" class="d4 bor seg">&nbsp;106&nbsp;</td><td style="border:1px solid gray;text-align:right"  title="1.1:1" id="34" class="d4 bor seg">&nbsp;34&nbsp;</td><td style="border:1px solid gray;text-align:right"  title="1.2:1" id="70" class="d4 bor seg">&nbsp;70&nbsp;</td><td style="border:1px solid gray;text-align:right"  title="1.2:0" id="22" class="d4 bor seg">&nbsp;22&nbsp;</td><td style="border:1px solid gray;text-align:right"  title="1.3:0" id="46" class="d4 bor seg">&nbsp;46&nbsp;</td></tr>
<tr><td align="center">&nbsp;7&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip;">&nbsp;40&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip; font-weight:bold;" >&nbsp;160&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip; font-weight:bold;">&nbsp;52&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip; font-weight:bold;">&nbsp;106&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip; font-weight:bold;">&nbsp;34&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip; font-weight:bold;">&nbsp;70&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip; font-weight:bold;">&nbsp;22&nbsp;</td><td style="border:1px solid gray;text-align:right; background-color:papayawhip; font-weight:bold;">&nbsp;46&nbsp;</td></tr>
</table>
</table>
There is a more elaborated '''[http://www.teherba.org/fasces/oeis/collatz/comp.html segment directory] with 5000 rows'''.
 
===Properties of the segment directory===
There is a more elaborated '''[http://www.teherba.org/fasces/oeis/collatz/comp.html segment directory]''' with several thousand rows.
We make a number of claims for segments:
 
* (C1) All nodes in the segment directory are of the form 6 * n - 2.
The segment directory contains an infinite number of little subtrees from which we aim to build the single Collatz tree.
: This follows from the formula for columns <nowiki>C[i,1..3]</nowiki>, and for any higher column numbers from the 3-by-2 replacement property of the &sigma; operation.
===Left Side and Right Part===
* (C2) All segments have a finite length.
The first column(s) ''<nowiki>C[i, 1]</nowiki>'' will be denoted as the '''left side''' of the segments (or of the whole directory), while the columns ''<nowiki>C[i, j], j &gt; 4</nowiki>'' are called the '''right part'''.
: At some point the &sigma; operations will have replaced all factors 3 by 2.
 
* (C3) All nodes in the right part of a segment have the form 6 * (3<sup>n</sup> * 2<sup>m</sup> * f) - 2 with the same "3-2-free" factor f.
==Coverage==
: This follows from the operations for columns <nowiki>C[i,1..3]</nowiki>, and from the fact that the &sigma; operation maintains this property.
===Coverage of Non-Forks===
* (C4) All nodes in the right part of a particular segment are
We now show that
** different among themselves, and
* (C1) All numbers ''n &gt; 0'' are either forks (4 mod 6) or can be reached from forks.  
** different from the left side of that segment (except for the first segment for the root 4).
We investigate the residues modulo 6 in the following table (T5):
: For <nowiki>C[i,1..2]</nowiki> we see that the values modulo 24 are different. For the remaining columns, we see that the exponents of the factors 2 and 3 are different. They are shifted by the &sigma; operations, but they alternate, for example (in the segment with left part 40):
160 = 6 * (3<sup>3</sup> * 2<sup>0</sup> * 1) - 2
  52 = 6 * (3<sup>2</sup> * 2<sup>0</sup> * 1) - 2
106 = 6 * (3<sup>2</sup> * 2<sup>1</sup> * 1) - 2
  34 = 6 * (3<sup>1</sup> * 2<sup>1</sup> * 1) - 2
  70 = 6 * (3<sup>1</sup> * 2<sup>2</sup> * 1) - 2
  22 = 6 * (3<sup>0</sup> * 2<sup>2</sup> * 1) - 2
  46 = 6 * (3<sup>0</sup> * 2<sup>3</sup> * 1) - 2
* (C5) There is no cycle in a segment (except for the first segment for the root 4).
===Segment Lengths===
The segment directory is obviously very structured. The lengths of the compressed segments follow the pattern
4 2 2 4 2 2 L<sub>1</sub> 2 2 4 2 2 4 2 2 L<sub>2</sub> 2 2 4 2 2 ...
with two ''fixed lengths'' 2 and 4 and some ''variable lengths'' L<sub>1</sub>, L<sub>2</sub> ... &gt; 4. For the left parts 4, 40, 364, 3280, 29524 ([http://oeis.org/A191681 OEIS A191681]), the segment lengths have high values 4, 8, 12, 16, 20 which did not occur before. Those left parts are (9<sup>n+1</sup> - 1) / 2, or 4 * Sum(9<sup>i</sup>, i = 0..n).
===Coverage of the Right Part===
We now examine the modular conditions which result from the segment construction table in order to find out how the numbers of the form 6 * n - 2 are covered by the right part of the segment directory, as shown in the following table (T3):
{| class="wikitable" style="text-align:left"
{| class="wikitable" style="text-align:left"
!Columns j  !! Covered !! Remaining         
|-
| 2-3 ||  4, 16 mod 24 || 10, 22, 34, 46 mod 48
|-
| 3-4 ||  10, 34 mod 48 || 22, 46, 70, 94 mod 96
|-
| 5-6 ||  70, 22 mod 96 || 46, 94, 142, 190 mod 192
|-
|-
| 7-8 || 46, 142 mod 192 || 94, 190, 286, 382 mod 384
!Operation                  !! Condition    !! Target<br>Nodes  !! Reverse<br>Op.!!Covered<br>Residues !! Remaining<br>Residues
|-                                                                 
|n = 6i - 2                ||                    || 6i - 2      ||d ||4 mod 6      || 0, 1, 2, 3, 5 mod 6
|-                                                                                   
|n &delta;                  ||                    || 2i - 1      ||u ||1, 3, 5 mod 6|| 0, 2, 6, 8 mod 12
|-                                                                                 
|n &micro;                  ||                    || 12i - 4      ||d ||8 mod 12    || 0, 2, 6 mod 12
|-                                                                                   
|n &delta;&micro;<sup>1/sup>||i &#x2261; 1, 2 mod 3|| 4i - 2      ||d ||2, 6 mod 12  || 0, 12 mod 24
|-                                                                                   
|n &delta;&micro;<sup>2/sup>||i &#x2261; 2 mod 3  || 8i - 4      ||d ||12 mod 24    || 0 mod 24
|-                                                                                   
|n &delta;&micro;<sup>3/sup>||i &#x2261; 2 mod 3  || 16i - 8      ||d ||0 mod 24    || (none)
|-
|-
| ... ||  ... || ...
|}
|}
We can always exclude the first and the third element remaining so far by looking in the next two columns of segments with sufficient length.
Furthermore, as can be seen from the possible reverse operations:
* (C6) There is no limit on the length of a segment.
* (C2) There is only one subpath from some fork to a specific non-fork.
: We only need to take a segment which, in its right part, has a factor of 3 with a sufficiently high power, and the &sigma; operations will stretch out the segment accordingly.
 
Therefore we can continue the modulus table above indefinitely, which leads us to the claim:
===Coverage of Forks===
* (C7) '''All numbers of the form 6 * n - 2 occur exactly once''' in the right part of the segment directory, and once as a left side. There is a bijective mapping between the left sides and the elements of the right parts.
We want to show:
: The sequences defined by the columns in the right part all have different modulus conditions. Therefore they are all disjoint.
* (C3) Any fork node of the form ''6n - 2'' occurs exactly
==Forest directory==
** once in the left part and  
We construct a ''forest directory'' F which initially is a copy of the segment directory C. F lists all the small trees with two branches which are represented by the right parts in the segment directory. These trees are ''labelled'' by the left sides.
** once in the right part of the segment directory.
Then we start a ''gedankenexperiment'' analogous to [https://en.wikipedia.org/wiki/Hilbert%27s_paradox_of_the_Grand_Hotel Hilbert's hotel]. We consider simultaneously all rows i &gt; 1 (omitting the root segment) in F which fulfill some modularity condition (the ''source'' row in F), and we ''attach'' (identify, connect) them to their unique occurrence in the right part of F (''target'' row and column).
The first claim is fulfilled by the construction of the segment directory. The following table (T3) shows how the second claim is proven. The modular conditions for the fork nodes are successively narrowed up to arbitrarily high powers of 2.
* (C8) The attachment process does not create any new cycle (in addition to the one in the root segment).
: Let tree t1 with label n1 and right part R1 be attached to node n1 in the right part R2 of the unique tree t2 which is labelled by n2. t1 and t2 are disjoint trees, therefore the result of such a single attachment step is a tree again (t2', still labelled by n2).  
: A technical implementation of the process (which is impossible for infinite sets) would perhaps replace the target node by a pointer to the source tree.
We ''sieve'' the trees in F: Whenever we attach t1 to n1 in t2, we remove the row for n1 resp. t1 in F.  The attachment rules are shown in the following table (T4):
{| class="wikitable" style="text-align:left"
|-
!Source Row i        !! Target Row !! Target Column        !! Remaining Rows                !! Fraction
|-                     
|i &#x2261; 3 mod 4  ||((i -  3) /  4) * 3<sup>0</sup> + 1 || 2||i &#x2261; 0, 1, 2 mod 4      ||3/4
|-                                                           
|i &#x2261; 1 mod 4  ||((i -  1) /  4) * 3<sup>1</sup> + 1 || 3||i &#x2261; 0, 2, 4, 6 mod 8    ||1/2
|-                                                           
|i &#x2261; 2 mod 8  ||((i -  2) /  8) * 3<sup>1</sup> + 1 || 4||i &#x2261; 0, 4, 6 mod 8      ||3/8
|-                                                           
|i &#x2261; 6 mod 8  ||((i -  6) /  8) * 3<sup>2</sup> + 7 || 5||i &#x2261; 0, 4, 8, 12 mod 16  ||1/4
|-                                                           
|i &#x2261; 12 mod 16||((i - 12) / 16) * 3<sup>2</sup> + 7 || 6||i &#x2261; 0, 4, 8 mod 16      ||3/16
|-                                                           
|i &#x2261; 4  mod 16||((i -  4) / 16) * 3<sup>3</sup> + 7 || 7||i &#x2261; 0, 8, 16, 24 mod 32 ||1/8
|-                                                           
|i &#x2261; 8  mod 32||((i -  8) / 32) * 3<sup>3</sup> + 7 || 8||i &#x2261; 0, 16, 24 mod 32    ||3/32
|-                                                           
|i &#x2261; 24 mod 32||((i - 24) / 32) * 3<sup>4</sup> + 61|| 9||i &#x2261; 0, 16, 32, 48 mod 64||1/16
|-                                                           
|i &#x2261; 48 mod 64||((i - 48) / 64) * 3<sup>4</sup> + 61||10||i &#x2261; 0, 16, 32 mod 64    ||3/64
|-                                                           
|i &#x2261; 16 mod 64||((i - 16) / 64) * 3<sup>5</sup> + 61||11||i &#x2261; 0, 32, 64, 96 mod 128 ||1/32
|-                     
| ...                ||  ...                              ||  ... || ...                      || ...
|-                     
|}
It should be obvious how the next rows of this table should be filled: The residues of 2<sup>k</sup> in the first column are 3 * 2<sup>k-2</sup>, 1 * 2<sup>k-2</sup> in an alternating sequence. The additive constants in the second column are the indexes of the variable length segments with left parts (4), 40, 364, 3280, 29524 ([http://oeis.org/A191681 OEIS A191681]) mentioned above. They are repeated 4 times since the corresponding lengths "jump" by 4.
It should be noted that it does not matter in which order the single attachment steps are performed.
===Tree connectivity===
* (C9) The tree of any source row with arbitrarily large left side n1 will eventually be be attached to another tree which contains n1 in its node set.
: Similiar to the arguments for coverage of segments, we have to apply the rules from table T4 one after the other up to a sufficiently high row (corresponding to a sufficiently long variable segment).
* (C9a) In the end, all subtrees will be attached to the root segment.
: Suppose there is a set U of subtrees left which are not connected to the root segment. We consider the subtree t in U  with the smallest label. We know that it should have been attached - to where? Either to the root segment, or to another tree in U. ''Is this  already a contradiction?''
:If not, then in both cases the number of trees is reduced by 1. We repeat the argument until there is only one subtree t left in U. The label of t is not contained in t's node set, so it must be contained in the node set of the tree already attached to the root segment, and that is the node where t must also be attached.
: And if U is infinite? Then the two trees attached to the root segment would have a finite number of nodes. Then they have leaves which have no tree attached to them. But by T4 we could always determine the subtree which should have been attached, so we have a contradiction.
We denote the final tree resulting from the sieving process by '''compressed tree'''.
==The Collatz Tree==
* (C10) The compressed tree is a subgraph of the Collatz graph.
: The edges of the compressed tree carry combined operations &micro;&micro;, &delta;&micro;&micro; and &sigma; = &delta;&micro;.
So far, numbers of the form x &#x2261; 0, 1, 2, 3, 5 mod 6 are missing from the compressed tree.  


We insert intermediate nodes into the compressed tree by applying operations on the left parts of the segments as shown in the following table (T5):
{| class="wikitable" style="text-align:left"
{| class="wikitable" style="text-align:left"
!Columns j !! Covered        !! Remaining
|-
|-
! Operation            !! Condition            !! Resulting Nodes !! Remaining Nodes
| 2-3      ||   4, 16 mod 24  || 10, 22, 34, 46 mod 48
|-                    
|-        
|&delta;              ||                      || 2 * i - 1      || i &#x2261; 0, 2, 6, 8 mod 12
| 3-4      || 10, 34 mod 48  || 22, 46, 70, 94 mod 96
|-                    
|-        
|&micro;              ||                      || 12 * i - 4      || i &#x2261; 0, 2, 6 mod 12
| 5-6      || 70, 22 mod 96  || 46, 94, 142, 190 mod 192
|-                    
|-        
|&delta;&micro;        || i &#x2261; 1, 2 mod 3 || 4 * i - 2      || i &#x2261; 0, 12 mod 24
| 7-8      || 46, 142 mod 192|| 94, 190, 286, 382 mod 384
|-
|-        
|&delta;&micro;&micro; || i &#x2261; 2 mod 3    || 8 * i - 4      || i &#x2261; 0 mod 24
| ...      ||  ...            || ...
|-
|&delta;&micro;&micro;&micro; || i &#x2261; 2 mod 3 || 16 * i - 8 || (none)
|-
|}
|}
The first three rows in T5 care for the intermediate nodes at the beginning of the segment construction with columns 1, 2, 3. Rows 4 and 5 generate the sprouts (starting at multiples of 3) which are not contained in the segment directory.
We can always exclude the first and the third element remaining so far by looking in the next two columns of segments with sufficient length.


We call such a construction a ''detailed segment'' (in contrast to the ''compressed segments'' described above).
* (C6) There is no limit on the length of a segment.
:: A '''[http://www.teherba.org/fasces/oeis/collatz/rails.html detailed segment directory]''' can  be created by the same [https://github.com/gfis/fasces/blob/master/oeis/collatz/collatz_rails.pl Perl program]. In that directory, the two subpaths of a segment are shown in two lines. Only the highlighted nodes are unique.
:: We only need to take a segment which, in its right part, has a factor of 3 with a sufficiently high power, and the &sigma; operations will stretch out the segment accordingly.
 
Therefore we can continue the modulus table above indefinitely, which leads us to the claim:
* (C11) The connectivity of the compressed tree remains unaffected by the insertions.
* '''(C7)''' All numbers of the form ''6m - 2'' occur exactly once in the right part of the segment directory, and once as a left side. There is a bijective mapping between the left sides and the elements of the right parts.
* (C12) With the insertions of T5, the compressed tree covers the whole Collatz graph.
:: The sequences defined by the columns in the right part all have different modulus conditions. Therefore they are all disjoint. The left sides are disjoint by construction.
* (C13) '''The Collatz graph is a tree''' (except for the trivial cycle 4-2-1).

Revision as of 17:40, 26 November 2018

Abstract

With the operations defined by Collatz for his 3x + 1 problem, two sets of special, finite trees are constructed. It is shown that these trees contain all numbers, and that the can be combined to form bigger trees by an iterative process. This process is repeated on four levels, until it is finally shown that all remaining trees can be combined into one tree which contains all natural numbers, and which is free of cycles (except for the cycle 4-2-1).

Introduction

Collatz sequences (also called trajectories) are sequences of integer numbers > 0. For some start value > 0 the elements of a particular sequence are constructed with two simple rules:

  1. Even numbers are halved.
  2. Odd numbers are multiplied by 3 and then incremented by 1.

Since decades it is unknown whether the final cyle 4 - 2 - 1 is always reached for all start values. This problem is the Collatz conjecture, for which the English Wikipedia states:

It is also known as the 3n + 1 conjecture, the Ulam conjecture (after Stanisław Ulam), Kakutani's problem (after Shizuo Kakutani), the Thwaites conjecture (after Sir Bryan Thwaites), Hasse's algorithm (after Helmut Hasse), or the Syracuse problem; the sequence of numbers involved is referred to as the hailstone sequence or hailstone numbers (because the values are usually subject to multiple descents and ascents like hailstones in a cloud), or as wondrous numbers.

Simple visualizations of Collatz sequences show no obvious structure. The sequences for the first dozen of start values are rather short, but the sequence for 27 suddenly has 112 elements.

Da sieht man den Wald vor lauter Bämen nicht.
German proverb: You cannot see the wood for the trees.

References

  • Jeffry C. Lagarias, Ed.: The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010, ISBN 978-8218-4940-8. MBK78
  • OEIS A07165: File of first 10K Collatz sequences, ascending start values, with lengths
  • Manfred Trümper: The Collatz Problem in the Light of an Infinite Free Semigroup. Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 p.

Collatz Graph

When all Collatz sequences are read backwards, they form the Collatz graph starting with 1, 2, 4, 8 ... . At each node n > 4 in the graph, the path from the root (4) can be continued

  • always to n * 2, and
  • to (n - 1) / 3 if n ≡ 1 mod 3.

The Collatz conjecture claims that the Collatz graph

  • contains all numbers,

and that it - except for the leading cycle 1 - 2 - 4 - 1 - 2 - 4 ... -

  • has the form of a tree (without cycles).

We will not consider the leading cycle, and we start the graph with node 4, the root. Furthermore we observe that a path can be continued with duplications only once it reaches a node n ≡ 0 mod 3. We omit these trivial continuations.

Graph Operations

Following Trümper, we use abbreviations for the elementary operations which map a node (element, number) n in the Collatz graph to the a neighbouring node as shown in the following table (T1):

Name Mnemonic Distance to root Mapping Condition
d "down" -1 n ↦ n / 2 n ≡ 0 mod 2
u "up" -1 n ↦ 3 * n + 1 (none)
s := ud "spike" -2 n ↦ (3 * n + 1) / 2) n ≡ 1 mod 2
δ "divide" +1 n ↦ (n - 1) / 3 n ≡ 1 mod 3
µ "multiply" +1 n ↦ n * 2 (none)
σ := δµ "squeeze" +2 n ↦ ((n - 1) / 3) * 2 n ≡ 1 mod 3

The operations will be noted as infix operators, with the source node as left operand and the target node as right operand, for example 10 δµ 6. In the following, we will mainly be interested in the reverse mappings (denoted with greek letters) which move away from the root 4 of the graph.

Motivation: Patterns in sequences with the same length

A closer look at the Collatz sequences shows a lot of pairs of adjacent start values which have the same sequence length, for example (from OEIS A070165):

142/104: 142 d  71 u 214 d 107 u 322 d 161 u 484 d  242 d 121 u 364 ] d 182 ... 4 d 2 d 1
143/104: 143 u 430 d 215 u 646 d 323 u 970 d 485 u 1456 d 728 d 364 ] d 182 ... 4 d 2 d 1

The alternating pattern of operations can be continued to the left with additional pairs of steps:

 n? u [ 62 d  31 u  94 d  47 u 142 d ...
126 d [ 63 u 190 d  95 u 286 d 143 u ...

The pattern stops here since there is no integer n such that n * 3 + 1 = 62. Beginning at some node (364 ≡ 4 mod 6 in the example), these sequences join and follow the same path down to the root 4. The two differing parts of the sequences show a regular pattern. Proceeding from right to left, and thereby using the inverse operations, we see the following operations:

364 δ 121 µ  242 µ 484 δ 161 µ 322 δ 107 µ 214 δ  71 µ 142 δ  47 µ  94 δ  31 µ 62
364 µ 728 µ 1456 δ 485 µ 970 δ 323 µ 646 δ 215 µ 430 δ 143 µ 286 δ  95 µ 190 δ 63

Segments

These patterns lead us to the construction of special subsets of paths in the Collatz graph which we call segments. Starting at some node n ≡ 4 mod 6, the fork, two subpaths lead away from the root in a prescribed, finite sequence of operations.

The nodes n ≡ 4 mod 6 play a special role because they are the only ones for which both a δ and a µ operation is possible.

Segment Construction Rules

Informally, the segments are constructed beginning at the fork with a few differing operations, followed by a sequence of σ operations in both subpaths.

The segment construction process stops when the next node in one of the two subpaths becomes divisible by 3, i.e. when a δ (resp. σ) operation is no more possible. We will show that this is always the case.

σ replaces 3 by 2

The σ operation, when applied to fork nodes of the form 6i - 2 with i = 3k, has the interesting property that it maintains the general form 6n - 2:

6(3k) - 2 σ (2(3k) - 1) * 2 = 12k - 2 = 6(2k) - 2

That means that σ replaces one factor 3 by a factor 2 (it "squeezes" a 3 into a 2). In the opposite direction, the s ("spike") operation replaces one factor 2 in i by a factor 3. In the same way we could have used the form 6n + 4 with i = 3k - 1:

6(3k - 1) + 4 σ (2 * (3k - 1) + 1) * 2 = 12k - 4 + 2 = 6(2k - 1) + 4

Whether the resulting formulas are more simple may be a matter of taste. We use the previous form 6n - 2 in the rest of this article.

With this property it is easy to state:

  • (S??) For any possible fork node, the corresponding segment is of finite length.
The length of the segment is proportional to the power of 3 contained in the factor i of the fork node, which is finite.

Segment Directory Construction

For the presentation of various properties of the segments, we use a linearized notation of the two subpaths. We list the segments for all possible fork nodes of the form 6i - 2, i > 0 as rows of an infinite array C[i, j] which we call the segment directory.

The following table (T2) tells how the columns j in one row i of C must be constructed if the condition is fulfilled:

Column j Operation Formula Condition First elements
1 C[i, 1] 6 * i - 2 4, 10, 16, 22, 28 ...
2 C[i, 1] µµ 24 * (i - 1) / 1 + 16 16, 40, 64, 88, 112 ...
3 C[i, 1] δµµ 24 * (i - 1) / 3 + 4 i ≡ 1 mod 3 4, 28, 52, 76, 100 ...
4 C[i, 2] σ 48 * (i - 1) / 3 + 10 i ≡ 1 mod 3 10, 58, 106, 134 ...
5 C[i, 3] σ 48 * (i - 7) / 9 + 34 i ≡ 7 mod 9 34, 82, 130, 178 ...
6 C[i, 4] σ 96 * (i - 7) / 9 + 70 i ≡ 7 mod 9 70, 166, 262, 358 ...
7 C[i, 5] σ 96 * (i - 7) / 27 + 22 i ≡ 7 mod 27 22, 118, 214, 310 ...
8 C[i, 6] σ 192 * (i - 7) / 27 + 46 i ≡ 7 mod 27 46, 238, 430, 622 ...
9 C[i, 7] σ 192 * (i - 61) / 81 + 142 i ≡ 61 mod 81 142, 334 ...
... ... ... ... ...
j C[i, j-2] σ 6 * 2k+1 * (i - m) / 3l + 3 * 2k * h - 2 i ≡ m mod 3l ...

The general formula for a column j >= 4 uses the following parameters:

  • k = floor(j / 2)
  • l = floor(j - 1) / 2)
  • m = a(floor((j - 1) / 4), where a(n) is the OEIS sequence (A066443: a(0) = 1; a(n) = 9 * a(n-1) - 2 for n > 0 . The values are the indexes 1, 7, 61, 547, 4921 ... of the variable length segments with left sides (4), 40, 364, 3280, 29524 (OEIS A191681). The constants appear first in columns 2-4 (in segment 1), 5-8 (in segment 7), 9-12 (in segment 61) and so on
  • h = a(j), where a(n) is the OEIS sequence A084101 with period 4: a(0..3) = 1, 3, 3, 1; a(n) = a(n - 4) for n > 3.

(This results in k = 2, l = 1, m = 1, h = 1 for j = 4.)

The first few lines of the segment directory are the following:

 1   2   3   4   5   6   7   8   9   10   11  ... 2*j 2*j+1
  i   6*i‑2 µµ δµµ µµσ δµµσ µµσσ δµµσσ µµσ3 δµµσ3 µµσ4 δµµσ4 ... µµσj-1 δµµσj-1
 1   4   16  4  10 
 2  10   40 
 3  16   64 
 4  22   88  28  58 
 5  28  112 
 6  34  136 
 7  40  160  52  106  34  70  22  46 

There is a more elaborated segment directory with several thousand rows.

The segment directory contains an infinite number of little subtrees from which we aim to build the single Collatz tree.

Left Side and Right Part

The first column(s) C[i, 1] will be denoted as the left side of the segments (or of the whole directory), while the columns C[i, j], j > 4 are called the right part.

Coverage

Coverage of Non-Forks

We now show that

  • (C1) All numbers n > 0 are either forks (4 mod 6) or can be reached from forks.

We investigate the residues modulo 6 in the following table (T5):

Operation Condition Target
Nodes
Reverse
Op.
Covered
Residues
Remaining
Residues
n = 6i - 2 6i - 2 d 4 mod 6 0, 1, 2, 3, 5 mod 6
n δ 2i - 1 u 1, 3, 5 mod 6 0, 2, 6, 8 mod 12
n µ 12i - 4 d 8 mod 12 0, 2, 6 mod 12
n δµ1/sup> i ≡ 1, 2 mod 3 4i - 2 d 2, 6 mod 12 0, 12 mod 24
n δµ2/sup> i ≡ 2 mod 3 8i - 4 d 12 mod 24 0 mod 24
n δµ3/sup> i ≡ 2 mod 3 16i - 8 d 0 mod 24 (none)

Furthermore, as can be seen from the possible reverse operations:

  • (C2) There is only one subpath from some fork to a specific non-fork.

Coverage of Forks

We want to show:

  • (C3) Any fork node of the form 6n - 2 occurs exactly
    • once in the left part and
    • once in the right part of the segment directory.

The first claim is fulfilled by the construction of the segment directory. The following table (T3) shows how the second claim is proven. The modular conditions for the fork nodes are successively narrowed up to arbitrarily high powers of 2.

Columns j Covered Remaining
2-3 4, 16 mod 24 10, 22, 34, 46 mod 48
3-4 10, 34 mod 48 22, 46, 70, 94 mod 96
5-6 70, 22 mod 96 46, 94, 142, 190 mod 192
7-8 46, 142 mod 192 94, 190, 286, 382 mod 384
... ... ...

We can always exclude the first and the third element remaining so far by looking in the next two columns of segments with sufficient length.

  • (C6) There is no limit on the length of a segment.
We only need to take a segment which, in its right part, has a factor of 3 with a sufficiently high power, and the σ operations will stretch out the segment accordingly.

Therefore we can continue the modulus table above indefinitely, which leads us to the claim:

  • (C7) All numbers of the form 6m - 2 occur exactly once in the right part of the segment directory, and once as a left side. There is a bijective mapping between the left sides and the elements of the right parts.
The sequences defined by the columns in the right part all have different modulus conditions. Therefore they are all disjoint. The left sides are disjoint by construction.