OEIS/A322469: Difference between revisions

From tehowiki
Jump to navigation Jump to search
imported>Gfis
preparation for OEIS
 
imported>Gfis
finished?
Line 5: Line 5:
   
   
  Offset: 1,1
  Offset: 1,1
  Comments: The sequence is the flattened form of a table T(i, j)
  Comments: The sequence is the flattened form of an irregular table T(i, j)
  (c.f. the example below) which has rows í >= 1 consisting of  
  (c.f. the example below) which has rows í >= 1 consisting of subsequences
  subsequences of varying length as defined by the  
  of varying length as defined by the following algorithm:  
following algorithm:  
     T(i, 1) := 4i - 1; j := 1;
     T(i, 1) := 4i - 1; j := 1;
     while T(i, j) divisible by 3 do
     while T(i, j) divisible by 3 do
Line 15: Line 14:
         j := j + 2;
         j := j + 2;
     end while
     end while
  The algorithm always stops, and in one row,
  The algorithm successively replaces any factor 3 by a factor 2,
it successively replaces any factor 3 by a factor 2.
and therefore it always stops. The first rows which are longer
than any previous row are 1, 7, 61, 547, 4921 ... (A066443).
   
   
  Property: The sequence is a permutation of the natural numbers > 0.
  Property: The sequence is a permutation of the natural numbers > 0.
  Proof: (Start)
  Proof: (Start)
  The values in columns j in the table's rows i of the form i = f * k + g,  
  The values in the columns j of T for row indexes i of the form  
k >= 0, if such columns are present, have the following residues modulo  
i = e * k + f, k >= 0, if such columns are present, have the following  
powers of 2:
residues modulo some power of 2:
   
   
   j | Op. | Form of i |  T(i, j) |  Residues  | Residues not yet covered
   j | Op. | Form of i   |  T(i, j)     |  Residues  | Residues not yet covered
  ---|-----| ----------|-----------|------------|-------------------------
  ---+------+ -------------+--------------+------------+-------------------------
   1 |     1k +  1  |  4k +  3 |  3 mod  4 |  0,  1,  2    mod  4
   1 |     1 * k +  1  |  4 * k +  3 |  3 mod  4 |  0,  1,  2    mod  4
   2 | /3  |  3k +  1  |  4k +  1 |  1 mod  4 |  0,  2,  4,  6 mod  8
   2 | / 3  |  3 * k +  1  |  4 * k +  1 |  1 mod  4 |  0,  2,  4,  6 mod  8
   3 | *2  |  3k +  1  |  8k +  2 |  2 mod  8 |  0,  4,  6    mod  8
   3 | * 2  |  3 * k +  1  |  8 * k +  2 |  2 mod  8 |  0,  4,  6    mod  8
   4 | /3  |  9k +  7  |  8k +  6 |  6 mod  8 |  0,  4,  8, 12 mod 16
   4 | / 3  |  9 * k +  7  |  8 * k +  6 |  6 mod  8 |  0,  4,  8, 12 mod 16
   5 | *2  |  9k +  7  |  16k + 12 |  12 mod 16 |  0,  4,  8    mod 16
   5 | * 2  |  9 * k +  7  |  16 * k + 12 |  12 mod 16 |  0,  4,  8    mod 16
   6 | /3  | 27k +  7  |  16k +  4 |  4 mod 16 |  0,  8, 16, 24 mod 32
   6 | / 3  | 27 * k +  7  |  16 * k +  4 |  4 mod 16 |  0,  8, 16, 24 mod 32
   7 | *2  | 27k +  7  |  32k +  8 |  8 mod 32 |  0, 16, 24    mod 32
   7 | * 2  | 27 * k +  7  |  32 * k +  8 |  8 mod 32 |  0, 16, 24    mod 32
   8 | /3  | 81k + 61  |  32k + 24 |  24 mod 32 |  0, 16, 32, 48 mod 64
   8 | / 3  | 81 * k + 61  |  32 * k + 24 |  24 mod 32 |  0, 16, 32, 48 mod 64
   9 | *2  | 81k + 61  |  64k + 48 |  48 mod 64 |  0, 16, 32    mod 64
   9 | * 2  | 81 * k + 61  |  64 * k + 48 |  48 mod 64 |  0, 16, 32    mod 64
  ...|     | f*k +  g  |  ... +  r |            |
  ...| ...  | e * k +  f  |  g * k + m |   m mod g |  0, ...
   
   
  In general, f is a power of 3 increasing in every second column,  
  The variables in the last, general line can be computed from the
  and g is taken from A066443 (a(0) = 1; a(n) = 9 * a(n-1) - 2  
  the operations in the algorithm. They are the following:
for n > 0). g increases in every fourth column. The residues r
  e = 3^floor(j / 2)
follow the pattern (3, 1, 1, 3) * 2^h, where h increases in
  f = A066443(floor(j / 4)) with A066443(0) = 0, A066443(n) = 9 * A066443(n-1) - 2  
every second column.
  g = 2^floor((j + 3) / 2)
  m = 2^floor((j - 1) / 4) * A084101(j + 1 mod 4) with A084101(0..3) = (1, 3, 3, 1)
   
   
  The residues in each column and therefore the values are all disjoint,  
  The residues m in each column and therefore the T(i, j) are all disjoint.
  and with i (and j, k) going to infinity, they cover all natural numbers > 0.
For numbers which contain a sufficiently high power of 3, the length of
  the rows grows beyond any limit, and the numbers containing any power of 2
will finally be covered
  (End)
  (End)
The lengths grow slowly; for example, the first number not in a(1..10^7) is 65536.
   
   
  Example:
  Example:
   i| j=1  2  3  4  5  6
   i | j = 1  2  3  4  5  6
  -+--------------------
----+--------------------
   13  1  2
   1 |    3  1  2
   27
   2 |    7
   311
   3 |    11
   415  5 10
   4 |    15  5 10
   519
   5 |    19
   623
   6 |    23
   727  9 18  6 12  4
   7 |    27  9 18  6 12  4
   
   
  Prog: (Perl)  
  Prog:  
  use integer; my $n = 1; my $i = 1;  
(PARI) n=1; for(i=1,100, a=4*i-1; print1(a); while(a%3==0, a=a/3;\
print1(" ", a); a=a*2; print1(" ", a)); print;)
  (Perl) use integer; my $n = 1; my $i = 1;  
  while ($i < 1000) {
  while ($i < 1000) {
   my $an = 4 * $i - 1; print "$n $an\n"; $n ++;
   my $an = 4 * $i - 1; print "$n $an\n"; $n ++;
Line 66: Line 72:
     $an *= 2; print "$n $an\n"; $n ++;
     $an *= 2; print "$n $an\n"; $n ++;
   } $i ++;  
   } $i ++;  
  } # A323232.pl, Georg Fischer Dec. 9 2018
  }  
 
  Crossrefs: C.f. A066443, A084101
  Crossrefs: Cf. A066443, A084101
  Keywords: nonn,tabf,easy
  Keywords: nonn,tabf,easy
  Author: Georg Fischer
  Author: Georg Fischer

Revision as of 00:03, 9 December 2018

Name: Permutation of the natural numbers: Step by 4 and replace factors 3 by 2.
3, 1, 2, 7, 11, 15, 5, 10, 19, 23, 27, 9, 18, 6, 12, 4, 8, 31, 35, 39, 13, 
26, 43, 47, 51, 17, 34, 55, 59, 63, 21, 42, 14, 28, 67, 71, 75, 25, 50, 79, 
83, 87, 29, 58, 91, 95, 99, 33, 66, 22, 44, 103, 107, 111, 37, 74

Offset: 1,1
Comments: The sequence is the flattened form of an irregular table T(i, j)
(c.f. the example below) which has rows í >= 1 consisting of subsequences 
of varying length as defined by the following algorithm: 
    T(i, 1) := 4i - 1; j := 1;
    while T(i, j) divisible by 3 do
        T(i, j + 1) := T(i, j) / 3; 
        T(i, j + 2) := T(i, j + 1) * 2;
        j := j + 2;
    end while
The algorithm successively replaces any factor 3 by a factor 2,
and therefore it always stops. The first rows which are longer 
than any previous row are 1, 7, 61, 547, 4921 ... (A066443).

Property: The sequence is a permutation of the natural numbers > 0.
Proof: (Start)
The values in the columns j of T for row indexes i of the form 
i = e * k + f, k >= 0, if such columns are present, have the following 
residues modulo some power of 2:

 j | Op.  | Form of i    |  T(i, j)     |  Residues  | Residues not yet covered
---+------+ -------------+--------------+------------+-------------------------
 1 |      |  1 * k +  1  |   4 * k +  3 |   3 mod  4 |   0,  1,  2     mod  4
 2 | / 3  |  3 * k +  1  |   4 * k +  1 |   1 mod  4 |   0,  2,  4,  6 mod  8
 3 | * 2  |  3 * k +  1  |   8 * k +  2 |   2 mod  8 |   0,  4,  6     mod  8
 4 | / 3  |  9 * k +  7  |   8 * k +  6 |   6 mod  8 |   0,  4,  8, 12 mod 16
 5 | * 2  |  9 * k +  7  |  16 * k + 12 |  12 mod 16 |   0,  4,  8     mod 16
 6 | / 3  | 27 * k +  7  |  16 * k +  4 |   4 mod 16 |   0,  8, 16, 24 mod 32
 7 | * 2  | 27 * k +  7  |  32 * k +  8 |   8 mod 32 |   0, 16, 24     mod 32
 8 | / 3  | 81 * k + 61  |  32 * k + 24 |  24 mod 32 |   0, 16, 32, 48 mod 64
 9 | * 2  | 81 * k + 61  |  64 * k + 48 |  48 mod 64 |   0, 16, 32     mod 64
...| ...  |  e * k +  f  |   g * k +  m |   m mod  g |   0, ...

The variables in the last, general line can be computed from the
the operations in the algorithm. They are the following:
  e = 3^floor(j / 2)
  f = A066443(floor(j / 4)) with A066443(0) = 0, A066443(n) = 9 * A066443(n-1) - 2 
  g = 2^floor((j + 3) / 2)
  m = 2^floor((j - 1) / 4) * A084101(j + 1 mod 4) with A084101(0..3) = (1, 3, 3, 1)

The residues m in each column and therefore the T(i, j) are all disjoint.
For numbers which contain a sufficiently high power of 3, the length of 
the rows grows beyond any limit, and the numbers containing any power of 2 
will finally be covered 
(End)
The lengths grow slowly; for example, the first number not in a(1..10^7) is 65536.

Example:
  i | j = 1  2  3  4  5  6
----+--------------------
  1 |     3  1  2
  2 |     7
  3 |    11
  4 |    15  5 10
  5 |    19
  6 |    23
  7 |    27  9 18  6 12  4

Prog: 
(PARI) n=1; for(i=1,100, a=4*i-1; print1(a); while(a%3==0, a=a/3;\
print1(" ", a); a=a*2; print1(" ", a)); print;)
(Perl) use integer; my $n = 1; my $i = 1; 
while ($i < 1000) {
  my $an = 4 * $i - 1; print "$n $an\n"; $n ++;
  while ($an % 3 == 0) {
    $an /= 3; print "$n $an\n"; $n ++;
    $an *= 2; print "$n $an\n"; $n ++;
  } $i ++; 
} 
Crossrefs: Cf. A066443, A084101
Keywords: nonn,tabf,easy
Author: Georg Fischer