OEIS/coors: Difference between revisions

From tehowiki
Jump to navigation Jump to search
imported>Gfis
No edit summary
imported>Gfis
Properties of factors
Line 1: Line 1:
==Generating functions for coordination sequences of uniform tilings===
==Generating functions for coordination sequences of uniform tilings==
For the 1248 k-uniform tilings determined by Brian Galebach generating functions (g.f.s) for all corresponding 6536 coordination seuences were guessed by Maple's gfun:guessgf from 128 initial terms.
For the 1248 k-uniform tilings determined by Brian Galebach, generating functions (g.f.s) for all corresponding 6536 coordination sequences (coseq.s) were "guessed" by Maple's gfun:guessgf from 128 initial terms.


The resulting rational g.f.s show - of course ? - rather obvious symmetrical properties.
The resulting rational g.f.s (with a numerator and a denominator polynomial) have several obvious properties.
===Denominator polynomials ===
===Denominator polynomials ===
When the denomiator polynomials are factored, there remain only the following 20, essentially different factors:
When the denominator polynomials are factorized, there are only 34 different factors (the leading numbers give the occurrences of the factor):
 
   6536 x-1
   6536 x-1
   5979 x+1
   2208 x+1
  2286 x^2+1              -> y+1
   2850 x^2-x+1
   1635 x^2-x+1
   4605 x^2+x+1
   3145 x^2+x+1
  1320 x^4+1                      -> y+1
   1306 x^4-x^3+x^2-x+1
  1061 x^4-x^2+1                  -> y^2-y+1
   2303 x^4+x^3+x^2+x+1
   1246 x^4-x^3+x^2-x+1
   2285 x^4+x^3+x^2+x+1
     305 x^6-x^5+x^4-x^3+x^2-x+1
    120 x^6-x^3+1                  -> y^2-y+1
  1448 x^6+x^3+1                  -> y^2+y+1
     271 x^6-x^5+x^4-x^3+x^2-x+1
   1474 x^6+x^5+x^4+x^3+x^2+x+1
   1474 x^6+x^5+x^4+x^3+x^2+x+1
    159 x^8+1                      -> y+1
     328 x^8-x^7+x^5-x^4+x^3-x+1
    23 x^8-x^4+1                  -> y^2-y+1
       6 x^8+x^7-x^5-x^4-x^3+x+1
    54 x^8-x^6+x^4-x^2+1          -> y^4-y^3+y^2-y+1
     328 x^8-x^7   +x^5-x^4+x^3   -x+1
       6 x^8+x^7   -x^5-x^4-x^3   +x+1
       6 x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1
       6 x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1
   1492 x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1
   1492 x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1
    11 x^12-x^6+1                  -> y^2-y+1
     32 x^12-x^11    +x^9-x^8    +x^6   -x^4+x^3-x+1
     34 x^12-x^10+x^8-x^6+x^4-x^2+1 -> y^6-y^5+y^4-y^3+y^2-y+1
       6 x^12+x^11    -x^9-x^8    +x^6    -x^4-x^3+x+1
       6 x^12+x^11    -x^9-x^8    +x^6    -x^4-x^3   +x+1
       5 x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1
       5 x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1
    32 x^12-x^11    +x^9-x^8    +x^6    -x^4+x^3    -x+1
     452 x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1
     452 x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1
      6 x^16+1                    -> y+1
      6 x^16-x^12+x^8-x^4+1        -> y^4-y^3+y^2-y+1
     89 x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1
     89 x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1
    12 x^18+x^9+1                -> y^2+y+1
     59 x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1
     59 x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1
    18 x^20+x^15+x^10+x^5+1      -> y^4-y^3+y^2-y+1
       6 x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1
       6 x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1
       6 x^24-x^23+x^19-x^18+x^17-x^16+x^14-x^13+x^12-x^11+x^10-x^8+x^7-x^6+x^5-x+1
       6 x^24-x^23+x^19-x^18+x^17-x^16+x^14-x^13+x^12-x^11+x^10-x^8+x^7-x^6+x^5-x+1
Sometimes a mapping of x^n -> x was applied in these factors (n >= 2).
We observe the following properties of for the denominators:
# All denominators have a factor ''(x-1)^2''.
# All coefficents of ''x'' in the factors are +1 or -1.
# Except for the factors ''x-1'' and ''x+1'', all factor have an even degree.
# With substitutions ''x^(k*m) -> y^k'' the number of different factor patterns could be further reduced (to 20).
# After such substitutions, the factors have the form ''sum(k=0..n: (+1 or -1)^k*x^k)'', except for one pattern of degree 8 and two patterns of degree 12.

Revision as of 19:46, 13 May 2020

Generating functions for coordination sequences of uniform tilings

For the 1248 k-uniform tilings determined by Brian Galebach, generating functions (g.f.s) for all corresponding 6536 coordination sequences (coseq.s) were "guessed" by Maple's gfun:guessgf from 128 initial terms.

The resulting rational g.f.s (with a numerator and a denominator polynomial) have several obvious properties.

Denominator polynomials

When the denominator polynomials are factorized, there are only 34 different factors (the leading numbers give the occurrences of the factor):

  6536 x-1
  2208 x+1
  2286 x^2+1               -> y+1
  1635 x^2-x+1
  3145 x^2+x+1
  1320 x^4+1                       -> y+1
  1061 x^4-x^2+1                   -> y^2-y+1
  1246 x^4-x^3+x^2-x+1
  2285 x^4+x^3+x^2+x+1
   120 x^6-x^3+1                   -> y^2-y+1
  1448 x^6+x^3+1                   -> y^2+y+1
   271 x^6-x^5+x^4-x^3+x^2-x+1
  1474 x^6+x^5+x^4+x^3+x^2+x+1
   159 x^8+1                       -> y+1
    23 x^8-x^4+1                   -> y^2-y+1
    54 x^8-x^6+x^4-x^2+1           -> y^4-y^3+y^2-y+1
   328 x^8-x^7    +x^5-x^4+x^3    -x+1
     6 x^8+x^7    -x^5-x^4-x^3    +x+1
     6 x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1
  1492 x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1
    11 x^12-x^6+1                  -> y^2-y+1
    34 x^12-x^10+x^8-x^6+x^4-x^2+1 -> y^6-y^5+y^4-y^3+y^2-y+1
     6 x^12+x^11     -x^9-x^8    +x^6    -x^4-x^3    +x+1
     5 x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1
    32 x^12-x^11     +x^9-x^8    +x^6    -x^4+x^3    -x+1
   452 x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1
     6 x^16+1                     -> y+1
     6 x^16-x^12+x^8-x^4+1        -> y^4-y^3+y^2-y+1
    89 x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1
    12 x^18+x^9+1                 -> y^2+y+1
    59 x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1
    18 x^20+x^15+x^10+x^5+1       -> y^4-y^3+y^2-y+1
     6 x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1
     6 x^24-x^23+x^19-x^18+x^17-x^16+x^14-x^13+x^12-x^11+x^10-x^8+x^7-x^6+x^5-x+1

We observe the following properties of for the denominators:

  1. All denominators have a factor (x-1)^2.
  2. All coefficents of x in the factors are +1 or -1.
  3. Except for the factors x-1 and x+1, all factor have an even degree.
  4. With substitutions x^(k*m) -> y^k the number of different factor patterns could be further reduced (to 20).
  5. After such substitutions, the factors have the form sum(k=0..n: (+1 or -1)^k*x^k), except for one pattern of degree 8 and two patterns of degree 12.