Collatz Streetmap: Difference between revisions

From tehowiki
Jump to navigation Jump to search
imported>Gfis
new def. of road
imported>Gfis
Streets
Line 25: Line 25:
* such that the reader could finally be convinced that the algorithm enumerates all numbers.
* such that the reader could finally be convinced that the algorithm enumerates all numbers.
===Steps===
===Steps===
In order to walk back and forth in the Collatz graph, we need to describe how to move from one node in the graph to another. We will write  
In order to walk back and forth in the Collatz graph, we will write  
  a ''s'' b
  a ''step'' b
when use step ''s'' to move from node (element) a in the Collatz graph/sequence to node b. The following table lists the steps which we will use:
to denote a move from node (element) a to b. The following table lists such steps:
{| class="wikitable" style="text-align:center"
{| class="wikitable" style="text-align:center"
!Name !! Mnemonic !! Direction !! Operation        !! Condition          !! Remark
!Name !! Mnemonic !! Direction !! Operation        !! Condition          !! Remark
Line 35: Line 35:
| t  || triple  ||  -> root  ||  b = 3 * a + 1  || true                || next in sequence
| t  || triple  ||  -> root  ||  b = 3 * a + 1  || true                || next in sequence
|-
|-
| m  || multiply ||  root ->  ||  b = a * 2      || true                || next up in tree
| m  || multiply ||  root ->  ||  b = a * 2      || true                || inverse of h
|-
|-
| d  || divide  ||  root ->  ||  b = (a - 1) / 3 || a ≡ 1 mod 3  || next up in tree
| d  || divide  ||  root ->  ||  b = (a - 1) / 3 || a ≡ 1 mod 3  || inverse of t
|}
|}
==Collatz roads==
Steps may be combined, for example
a dm b : b = ((a - 1) / 3) * 2
A starting number and a sequence of step names defines a unique, directed path in the Collatz graph.
=== Trivial paths===
There are two cases of paths with a very simple structure:
* Powers of 2: (n = 2<sup>k) hhhh ... h 8 h 4 h 2 h 1
* Numbers divisible by 3: n mmm ... m (n * 2<sup>k) ...
==Collatz streets==
===Motivation: Patterns in sequences with same length===
===Motivation: Patterns in sequences with same length===
When Collatz sequences are investigated, there are a lot of pairs of adjacent start values with the same sequence length, for example (from [https://oeis.org/A070165 OEIS A070165]):
A closer look at the Collatz sequences shows a lot of pairs of adjacent start values which have the same sequence length, for example (from [https://oeis.org/A070165 OEIS A070165]):
  142/104: [142 h  71 t 214 h 107 t 322 h 161 t 484 h  242 h 121 t 364 | 182, 91, ... 10, 5, 16, 8, 4, 2, 1]
  142/104: [142 h  71 t 214 h 107 t 322 h 161 t 484 h  242 h 121 t 364 | 182, 91, ... 10, 5, 16, 8, 4, 2, 1]
  143/104: [143 t 430 h 215 t 646 h 323 t 970 h 485 t 1456 h 728 h 364 | 182, 91, ... 10, 5, 16, 8, 4, 2, 1]
  143/104: [143 t 430 h 215 t 646 h 323 t 970 h 485 t 1456 h 728 h 364 | 182, 91, ... 10, 5, 16, 8, 4, 2, 1]
             +1  *6+4    +1  *6+4    +1  *6+4    +1  *6+4  *6+2     =   ...
             +1  *6+4    +1  *6+4    +1  *6+4    +1  *6+4  *6+2    +0    +0 ...
The third line shows the relation between the values in the first two lines.  
The third line tells how the second line can be computed from the first.  


Informally, a '''road''' is a parallel arrangement of 2 pathes stemming from 2 sequences which have a common tail. In the example above, the road starts with an element &#x2261; 4 mod 6 (the 364 before the bar), followed by t/h and h/h steps, and the road then extends to the left as long as a characteristical, alternating sequence of pairs of steps ht - th - ht - th ... can be continued. In the example, the road can be continued to the left with 4 additional steps, but the construction then stops since there is no number q such that q * 3 + 1 = 62:
Informally, a '''street''' is a parallel arrangement of 2 paths stemming from 2 sequences which have a common tail. A street starts with an element &#x2261; 4 mod 6 (364 in the example, before the bar), it proceeds to the left with a d/m and a m/m step, and then it extends to the left as long as a characteristical, alternating sequence of pairs of steps m/d - d/m - m/d - d/m ... can be continued. In the example, the street can be continued with 4 additional steps.
   q t | 62 h  31 t  94 h  47 t 142 h ...
   q t | 62 h  31 t  94 h  47 t 142 h ...
  126 h | 63 t 190 h  95 t 286 h 143 t ...
  126 h | 63 t 190 h  95 t 286 h 143 t ...
         +1  *6+4    +1  *6+4    +1   
         +1  *6+4    +1  *6+4    +1   
===Roads table R===
The construction stops since there is no number q such that q * 3 + 1 = 62:
For easier handling (e.g. in Excel) we list the roads for all starting values 4, 10, 16, 22 ... n*6+4 as rows of a table, in reversed direction (extending to the right). The columns of the rows are numbered r<sub>0</sub>, r<sub>1</sub>, r<sub>2</sub> ...
===Street directory===
Though the graph usually has a "chaotic" appearance, the streets exhibit quite some amount of regular structure. This can be seen if we list the streets for all possible starting values 4, 10, 16, 22 ... n*6+4 as rows of a table, in reversed direction (extending to the right). The columns of the rows are named c<sub>1</sub>, c<sub>2</sub>, c<sub>3</sub> ...
<table>
<table>
<tr align="right">
<tr align="right">
<td class="arl">r<sub>0</sub></td>
<td class="arl">c<sub>1</sub></td>
<td class="arl">r<sub>1</sub></td>
<td class="arl">c<sub>2</sub></td>
<td class="arl">r<sub>2</sub></td>
<td class="arl">c<sub>3</sub></td>
<td class="arl">r<sub>3</sub></td>
<td class="arl">c<sub>4</sub></td>
<td class="arl">r<sub>4</sub></td>
<td class="arl">c<sub>5</sub></td>
<td class="arl">r<sub>5</sub></td>
<td class="arl">c<sub>6</sub></td>
<td class="arl">r<sub>6</sub></td>
<td class="arl">c<sub>7</sub></td>
<td class="arl">r<sub>7</sub></td>
<td class="arl">c<sub>8</sub></td>
<td class="arl">r<sub>8</sub></td>
<td class="arl">c<sub>9</sub></td>
<td class="arl">r<sub>9</sub></td>
<td class="arl">c<sub>10</sub></td>
<td class="arl">r<sub>10</sub></td>
<td class="arl">c<sub>11</sub></td>
<td class="arl">r<sub>11</sub></td>
<td class="arl">c<sub>12</sub></td>
<td class="arl">r<sub>12</sub></td>
<td class="arl">c<sub>13</sub></td>
<td class="arl">r<sub>13</sub></td>
<td class="arl">c<sub>14</sub></td>
<td class="arl">r<sub>14</sub></td>
<td class="arl">c<sub>15</sub></td>
<td class="arl">r<sub>15</sub></td>
<td class="arl">...</td>
<td class="arl">...</td>
</tr>
<tr align="right">
<td class="arr">start</td>
<td class="arr">len</td>
<td class="arr"><strong>d</strong>r<sub>0</sub></td>
<td class="arl"><strong>m</strong>r<sub>0</sub></td>
<td class="arr"><strong>m</strong>r<sub>2</sub></td>
<td class="arl"><strong>m</strong>r<sub>3</sub></td>
<td class="arr"><strong>m</strong>r<sub>4</sub></td>
<td class="arl"><strong>d</strong>r<sub>5</sub></td>
<td class="arr"><strong>d</strong>r<sub>6</sub></td>
<td class="arl"><strong>m</strong>r<sub>7</sub></td>
<td class="arr"><strong>m</strong>r<sub>8</sub></td>
<td class="arl"><strong>d</strong>r<sub>9</sub></td>
<td class="arr"><strong>d</strong>r<sub>10</sub></td>
<td class="arl"><strong>m</strong>r<sub>11</sub></td>
<td class="arr"><strong>m</strong>r<sub>12</sub></td>
<td class="arl"><strong>d</strong>r<sub>13</sub></td>
<td class="arr">...</td>
</tr>
<tr align="right">
<td class="arr">&#x394;6</td>
<td class="arr"></td>
<td class="arr">&#x394;2</td>
<td class="arr">&#x394;12</td>
<td class="arr">&#x394;4</td>
<td class="arr">&#x394;24</td>
<td class="arr">&#x394;8</td>
<td class="arr">&#x394;8</td>
<td class="arr">3&#x394;8</td>
<td class="arr">3&#x394;48</td>
<td class="arr">3&#x394;16</td>
<td class="arr">3&#x394;16</td>
<td class="arr">9&#x394;16</td>
<td class="arr">9&#x394;96</td>
<td class="arr">9&#x394;32</td>
<td class="arr">9&#x394;32</td>
<td class="arr">...</td>
</tr>
</tr>
<tr align="right"><td><strong>4</strong></td><td class="arr">5</td><td class="d1">1</td><td class="d2">8</td><td class="d2">2</td><td><strong>16</strong></td><td><strong>4</strong></td><td class="d5">5</td><td class="d1">1</td><td><strong>10</strong></td><td class="d2">2</td><td class="d3">3</td></tr>
<tr align="right"><td><strong>4</strong></td><td class="arr">5</td><td class="d1">1</td><td class="d2">8</td><td class="d2">2</td><td><strong>16</strong></td><td><strong>4</strong></td><td class="d5">5</td><td class="d1">1</td><td><strong>10</strong></td><td class="d2">2</td><td class="d3">3</td></tr>
Line 125: Line 94:
<tr align="right"><td><strong>76</strong></td><td class="arr">4</td><td class="d1">25</td><td class="d2">152</td><td class="d2">50</td><td><strong>304</strong></td><td><strong>100</strong></td><td class="d5">101</td><td class="d3">33</td><td><strong>202</strong></td></tr>
<tr align="right"><td><strong>76</strong></td><td class="arr">4</td><td class="d1">25</td><td class="d2">152</td><td class="d2">50</td><td><strong>304</strong></td><td><strong>100</strong></td><td class="d5">101</td><td class="d3">33</td><td><strong>202</strong></td></tr>
</table>
</table>
The roads contain 2 parallel, short, interrelated paths in the Collatz graph. Though the graph usually has a "chaotic" appearance, the roads exhibit quite some amount of regular structure.


There is a more '''[http://www.teherba.org/fasces/oeis/collatz/roads.html elaborated example]''' for elements &lt;= 143248.  
There is a more '''[http://www.teherba.org/fasces/oeis/collatz/roads.html elaborated example]''' for elements &lt;= 143248.  
: When this file is displayed in a browser, the zoom factor may be reduced (with Ctrl "-", to 25 % for example) such that the structure of the lengths of roads can be seen.
: When this file is displayed in a browser, the zoom factor may be reduced (with Ctrl "-", to 25 % for example) such that the structure of the lengths of streets can be seen.
====Road lengths====
====Street lengths====
* The lengths r<sub>1</sub> of the roads seem to be finite. The highlighted pairs of numbers &#x2261; 4 mod 6 are decreasing to the end of the road.
* The lengths r<sub>1</sub> of the streets seem to be finite. The highlighted pairs of numbers &#x2261; 4 mod 6 are decreasing to the end of the street.
* The lengths show a repeating pattern for the start values mod 54. The fixed lengths 3, 4, 5 can probably be explained from the road construction rule.
* The lengths show a repeating pattern for the start values mod 54. The fixed lengths 3, 4, 5 can probably be explained from the street construction rule.
{| class="wikitable" style="text-align:center"
{| class="wikitable" style="text-align:center"
| 4 mod 54
| 4 mod 54
Line 153: Line 121:
| 3
| 3
|}
|}
* At the starting values 4, 40, 364, 3280, 29524 ([http://oeis.org/A191681 OEIS A191681]) the road lengths n<sub>i</sub> have high values 5, 9, 13, 17, 21 which did not occur before. Those starting values are (9<sup>n+1</sup> - 1) / 2, or 4 * Sum(9<sup>i</sup>, i=0..n).
* At the starting values 4, 40, 364, 3280, 29524 ([http://oeis.org/A191681 OEIS A191681]) the street lengths n<sub>i</sub> have high values 5, 9, 13, 17, 21 which did not occur before. Those starting values are (9<sup>n+1</sup> - 1) / 2, or 4 * Sum(9<sup>i</sup>, i=0..n).
* The pattern of increasing and decreasing lengths is replicated when subsets of the rows (mod 9, 27, 81 ...) are regarded.
* The pattern of increasing and decreasing lengths is replicated when subsets of the rows (mod 9, 27, 81 ...) are regarded.
====Coverage====
====Coverage====
The elements of the roads are strongly interconnected, and the table "obviously" shows all positive integers which are not multiples of 24:
The elements of the streets are strongly interconnected, and the table "obviously" shows all positive integers which are not multiples of 24:
{| class="wikitable"
{| class="wikitable"
| r<sub>0</sub> &#x2261; 4 mod 6
| r<sub>0</sub> &#x2261; 4 mod 6
Line 180: Line 148:
So if we can show that we reach all start values &#x2261; 4 mod 6, we have a proof that all positive integers are reached.
So if we can show that we reach all start values &#x2261; 4 mod 6, we have a proof that all positive integers are reached.


Starting with 4, it seems possible that a continuous expansion of all numbers &#x2261; 4 mod 6 into roads would finally yield all roads up to some start value. Experiments show that there are limits for the numbers involved. Roads above the ''clamp'' value are not necessary in order to obtain all roads below and including the ''start'' value:
Starting with 4, it seems possible that a continuous expansion of all numbers &#x2261; 4 mod 6 into streets would finally yield all streets up to some start value. Experiments show that there are limits for the numbers involved. Streets above the ''clamp'' value are not necessary in order to obtain all streets below and including the ''start'' value:
{| class="wikitable"
{| class="wikitable"
! start value
! start value
Line 194: Line 162:
|}
|}
==Subset table S==
==Subset table S==
We may build derived table from the table of roads. We take columns r<sub>0</sub> and r<sub>5</sub> ff., and therein we keep the highlighted entries (those which are &#x2261; 4 mod 6) only, add 2 to them and divide them by 6. The resulting subset table S starts as follows:
We may build derived table from the table of streets. We take columns r<sub>0</sub> and r<sub>5</sub> ff., and therein we keep the highlighted entries (those which are &#x2261; 4 mod 6) only, add 2 to them and divide them by 6. The resulting subset table S starts as follows:
  s0  s1  s2  s3  s4  s5  s6  s7  s8  ...
  s0  s1  s2  s3  s4  s5  s6  s7  s8  ...
   n  len   
   n  len   
Line 214: Line 182:
  16  5  63  21  42  14  28
  16  5  63  21  42  14  28
  ...
  ...
This table can be described by simple rules which are hopefully provable from the construction rule for the roads:  
This table can be described by simple rules which are hopefully provable from the construction rule for the streets:  
* s<sub>2</sub> is always s<sub>0</sub> * 4 - 1.  
* s<sub>2</sub> is always s<sub>0</sub> * 4 - 1.  
* When s<sub>2</sub> &#x2261; 0 mod 3, the following columns s<sub>3</sub>, s<sub>4</sub> ... are obtained by an alternating sequence of steps  
* When s<sub>2</sub> &#x2261; 0 mod 3, the following columns s<sub>3</sub>, s<sub>4</sub> ... are obtained by an alternating sequence of steps  

Revision as of 08:03, 28 August 2018

Introduction

Collatz sequences are sequences of non-negative integer numbers with a simple construction rule: even elements a halved, and odd elements are multiplied by 3 and then incremented by 1. Since many years it is unknown whether the final cyle 4 - 2 - 1 is always for any start value. This problem is the Collatz conjecture., for which the english Wikipedia states: It is also known as the 3n + 1 conjecture, the Ulam conjecture (after Stanisław Ulam), Kakutani's problem (after Shizuo Kakutani), the Thwaites conjecture (after Sir Bryan Thwaites), Hasse's algorithm (after Helmut Hasse), or the Syracuse problem; the sequence of numbers involved is referred to as the hailstone sequence or hailstone numbers (because the values are usually subject to multiple descents and ascents like hailstones in a cloud), or as wondrous numbers.

Whenever we speak of numbers in this article, we mean natural, positive integer numbers (without 0).

References

Collatz graph

When all Collatz sequences are read backwards, they form the Collatz graph starting with 1, 2, 4, 8 ... . At each node n > 4 in the graph, the path from the root (4) can be continued

  • always to n * 2, and
  • sometimes also to (n - 1) / 3.

When n ≡ 0 mod 3, the path will continue with duplications only, since these maintain the divisibility by 3.

The conjecture claims that the graphs contains all numbers, and that - except for the leading cycle 1 - 2 - 4 - 1 - 2 - 4 ... - it has the form of a tree without cylces.

Straightforward visualizations of the Collatz graph show now obvious structure. The sequences for the first dozen of start values seem to be rather harmless, but the sequence for 27 suddenly has 112 elements.

This article proposes

  • a rather regular structure for short portions of the Collatz graph, and
  • a corresponding algorithm which
    • combines these portions and
    • uses them to walk the graph in a systematic, predictable way
  • such that the reader could finally be convinced that the algorithm enumerates all numbers.

Steps

In order to walk back and forth in the Collatz graph, we will write

a step b

to denote a move from node (element) a to b. The following table lists such steps:

Name Mnemonic Direction Operation Condition Remark
h halve -> root b = a / 2 a ≡ 0 mod 2 next in sequence
t triple -> root b = 3 * a + 1 true next in sequence
m multiply root -> b = a * 2 true inverse of h
d divide root -> b = (a - 1) / 3 a ≡ 1 mod 3 inverse of t

Steps may be combined, for example

a dm b : b = ((a - 1) / 3) * 2 

A starting number and a sequence of step names defines a unique, directed path in the Collatz graph.

Trivial paths

There are two cases of paths with a very simple structure:

  • Powers of 2: (n = 2k) hhhh ... h 8 h 4 h 2 h 1
  • Numbers divisible by 3: n mmm ... m (n * 2k) ...

Collatz streets

Motivation: Patterns in sequences with same length

A closer look at the Collatz sequences shows a lot of pairs of adjacent start values which have the same sequence length, for example (from OEIS A070165):

142/104: [142 h  71 t 214 h 107 t 322 h 161 t 484 h  242 h 121 t 364 | 182, 91, ... 10, 5, 16, 8, 4, 2, 1]
143/104: [143 t 430 h 215 t 646 h 323 t 970 h 485 t 1456 h 728 h 364 | 182, 91, ... 10, 5, 16, 8, 4, 2, 1]
           +1  *6+4    +1  *6+4    +1  *6+4    +1   *6+4  *6+2    +0    +0 ...

The third line tells how the second line can be computed from the first.

Informally, a street is a parallel arrangement of 2 paths stemming from 2 sequences which have a common tail. A street starts with an element ≡ 4 mod 6 (364 in the example, before the bar), it proceeds to the left with a d/m and a m/m step, and then it extends to the left as long as a characteristical, alternating sequence of pairs of steps m/d - d/m - m/d - d/m ... can be continued. In the example, the street can be continued with 4 additional steps.

  q t | 62 h  31 t  94 h  47 t 142 h ...
126 h | 63 t 190 h  95 t 286 h 143 t ...
        +1  *6+4    +1  *6+4    +1  

The construction stops since there is no number q such that q * 3 + 1 = 62:

Street directory

Though the graph usually has a "chaotic" appearance, the streets exhibit quite some amount of regular structure. This can be seen if we list the streets for all possible starting values 4, 10, 16, 22 ... n*6+4 as rows of a table, in reversed direction (extending to the right). The columns of the rows are named c1, c2, c3 ...

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 ...
45182164511023
1033206401213
16353210642021
22474414882829958
283956181123637
3431168221364445
4091380261605253171063435117022237461415
4631592301846061
52317104342086869
58519116382327677251545051
64321128422568485
70323140462809293
764251525030410010133202

There is a more elaborated example for elements <= 143248.

When this file is displayed in a browser, the zoom factor may be reduced (with Ctrl "-", to 25 % for example) such that the structure of the lengths of streets can be seen.

Street lengths

  • The lengths r1 of the streets seem to be finite. The highlighted pairs of numbers ≡ 4 mod 6 are decreasing to the end of the street.
  • The lengths show a repeating pattern for the start values mod 54. The fixed lengths 3, 4, 5 can probably be explained from the street construction rule.
4 mod 54 10 mod 54 16 mod 54 22 mod 54 28 mod 54 34 mod 54 40 mod 54 46 mod 54 52 mod 54
5 3 3 4 3 3 n 3 3
  • At the starting values 4, 40, 364, 3280, 29524 (OEIS A191681) the street lengths ni have high values 5, 9, 13, 17, 21 which did not occur before. Those starting values are (9n+1 - 1) / 2, or 4 * Sum(9i, i=0..n).
  • The pattern of increasing and decreasing lengths is replicated when subsets of the rows (mod 9, 27, 81 ...) are regarded.

Coverage

The elements of the streets are strongly interconnected, and the table "obviously" shows all positive integers which are not multiples of 24:

r0 ≡ 4 mod 6 ≡ 4,10,16,22 mod 24
r3 ≡ 8 mod 12 ≡ 8,20 mod 24
r4 ≡ 2 mod 4 ≡ 2,6,10,14,18,22 mod 24
r5 ≡ 16 mod 24 ≡ 16 mod 24
r6 ≡ 4 mod 8 ≡ 4,12,20 mod 24
r2 ≡ 1 mod 2 all odd numbers

All odd multiples of 3 are contained in column r2. All multiples of 24 can be reached by duplicating them 3 times (3 m-steps).

So if we can show that we reach all start values ≡ 4 mod 6, we have a proof that all positive integers are reached.

Starting with 4, it seems possible that a continuous expansion of all numbers ≡ 4 mod 6 into streets would finally yield all streets up to some start value. Experiments show that there are limits for the numbers involved. Streets above the clamp value are not necessary in order to obtain all streets below and including the start value:

start value clamp value
4 4
40 76
364 2308
3280 143248

Subset table S

We may build derived table from the table of streets. We take columns r0 and r5 ff., and therein we keep the highlighted entries (those which are ≡ 4 mod 6) only, add 2 to them and divide them by 6. The resulting subset table S starts as follows:

s0  s1   s2   s3   s4   s5   s6   s7   s8   ...
 n  len  
 1   3    3    1    2
 2   1    7
 3   1   11
 4   3   15    5   10
 5   1   19
 6   1   23
 7   7   27    9   18    6   12    4    8
 8   1   31
 9   1   35
10   3   39   13   26
11   1   43
12   1   47
13   3   51   17   34
14   1   55
15   1   59
16   5   63   21   42   14   28
...

This table can be described by simple rules which are hopefully provable from the construction rule for the streets:

  • s2 is always s0 * 4 - 1.
  • When s2 ≡ 0 mod 3, the following columns s3, s4 ... are obtained by an alternating sequence of steps
    • si+1 = si / 3 and
    • si+2 = si+1 * 2,
    • until all factors 3 in s2 are replaced by factors 2.

Does S contain all positive integers?

The answer is yes. As above, we can regard the increments in successive columns:

ss ≡ 3 mod 4 half of the odd numbers
s3 ≡ 1 mod 4 other half of odd numbers
s4 ≡ 2 mod 8 ≡ 2,10 mod 16
s5 ≡ 6 mod 8 ≡ 6,14 mod 16
s6 ≡ 12 mod 16 ≡ 12 mod 16
s7 ≡ 4 mod 16 ≡ 4 mod 16
s8 ≡ 8 mod 32 8, 40, 72, ...
s9 ≡ 24 mod 32 24, 56, 88, ...
s10 ≡ 48 mod 64 48, 112, 176, 240 ...
s11 ≡ 16 mod 64 16, 80, ...

This shows that the columns s4 ... s7 contain all numbers ≡ 2,4,6,10,12,14 mod 16, but those ≡ 0,8 mod 16 are missing so far. The ones ≡ 8 mod 16 show up in s8 resp. s9, half of the multiples of 16 are in s10 resp. s11 but ≡ 0,32 mod 64 are missing, etc.

Since s2 contains arbitray high powers of 3, S has rows of arbitrary length, and for the missing multiples of powers of 2 the exponents can be driven above all limits.

Thus S contains all positive integers.

Can S be generated starting at 1?

We ask for an iterative process which starts with the row of S for index 1:

 1:    3    1    2

Then, all additional rows for the elements obtained so far are generated:

 2:    7
 3:   11

These rows are also expanded:

 7:   27    9   18    6   12    4    8
11:   43

Since we want to cover all indexes, we would first generate the rows for lower indexes. This process fills all rows up to s0 = 13 rather quickly, but the first 27 completely filled rows involve start numbers s0 up to 1539, and for the first 4831 rows, start values up to 4076811 are involved.