OEIS/Generating Functions and Recurrences: Difference between revisions
Jump to navigation
Jump to search
imported>Gfis Lin.rec. |
imported>Gfis No edit summary |
||
Line 1: | Line 1: | ||
===Linear | ===Linear Recurrences=== | ||
* | * There is a one-to-one relation between a linear recurrence and an ordinary, rational generating functions ("g.f.", with a fraction of two univariate polynomials). | ||
* The linear recurrence is computed from the g.f. by polynomial division, beginning with of the lowest term: | |||
1 / (1-x-x^2) = 1 + x + 2x^2 + 3x^3 + 5x^5 ... (Fibonnacci, [https://oeis.org/A000045 A000045]) | 1 / (1-x-x^2) = 1 + x + 2x^2 + 3x^3 + 5x^5 ... (Fibonnacci, [https://oeis.org/A000045 A000045]) | ||
-1 + x + x^2 | -1 + x + x^2 <---- denominator * (-1) | ||
------------ | ------------ <---- add | ||
0 + x + x^2 | |||
-x + x^2 + x^3 | -x + x^2 + x^3 | ||
-------------- | -------------- | ||
0 + 2x^2 + x^3 | |||
-2x^2 + 2x^3 + 2x^4 | |||
------------------- | ------------------- | ||
0 + 3x^2 + 2x^4 | |||
-3x^3 + 3x^4 + 3x^5 | |||
------------------- | |||
0 + 5x^4 + 3x^5 | |||
* The denominator's coefficients (without the constant 1) are the '''signature''' of the linear recurrence. | * The denominator's coefficients (without the constant 1) are the '''signature''' of the linear recurrence. The number of elements in the signature is the '''order''' of the recurrence. | ||
* This is equivalient to: | * This is equivalient to: | ||
a(0) = 1, a(1) = 1, a(n) = a(n - 1) + a(n - 2) for n > 1. | a(0) = 1, a(1) = 1, a(n) = a(n - 1) + a(n - 2) for n > 1. | ||
* The number of initial terms must be >= the order. | * The number of initial terms must be >= the order. | ||
Corresponding Mathematica functions: | * Corresponding [http://www.wolfram.com/mathematica/?source=nav Mathematica] functions: | ||
LinearRecurrence[{signature}, {initial terms}, number of terms] | LinearRecurrence[{signature}, {initial terms}, number of terms] | ||
LinearRecurrence[{1, 1}, {1, 1}, 8] for the Fibonnacci sequence | LinearRecurrence[{1, 1}, {1, 1}, 8] for the Fibonnacci sequence | ||
FindLinearRecurrence[{ | FindLinearRecurrence[{terms}] | ||
===Generating Functions=== | |||
* Corresponding [http://www.wolfram.com/mathematica/?source=nav Mathematica] functions: | |||
CoefficientList[Series[numerator_polynomial / denominator_polynomial, {x, 0, number of terms}], x] | |||
CoefficientList[Series[-(x/(-1 + x + x^2)), {x, 0, 20}], x] | |||
FindGeneratingFunction[{terms}] |
Revision as of 15:30, 3 May 2019
Linear Recurrences
- There is a one-to-one relation between a linear recurrence and an ordinary, rational generating functions ("g.f.", with a fraction of two univariate polynomials).
- The linear recurrence is computed from the g.f. by polynomial division, beginning with of the lowest term:
1 / (1-x-x^2) = 1 + x + 2x^2 + 3x^3 + 5x^5 ... (Fibonnacci, A000045) -1 + x + x^2 <---- denominator * (-1) ------------ <---- add 0 + x + x^2 -x + x^2 + x^3 -------------- 0 + 2x^2 + x^3 -2x^2 + 2x^3 + 2x^4 ------------------- 0 + 3x^2 + 2x^4 -3x^3 + 3x^4 + 3x^5 ------------------- 0 + 5x^4 + 3x^5
- The denominator's coefficients (without the constant 1) are the signature of the linear recurrence. The number of elements in the signature is the order of the recurrence.
- This is equivalient to:
a(0) = 1, a(1) = 1, a(n) = a(n - 1) + a(n - 2) for n > 1.
- The number of initial terms must be >= the order.
- Corresponding Mathematica functions:
LinearRecurrence[{signature}, {initial terms}, number of terms] LinearRecurrence[{1, 1}, {1, 1}, 8] for the Fibonnacci sequence FindLinearRecurrence[{terms}]
Generating Functions
- Corresponding Mathematica functions:
CoefficientList[Series[numerator_polynomial / denominator_polynomial, {x, 0, number of terms}], x] CoefficientList[Series[-(x/(-1 + x + x^2)), {x, 0, 20}], x] FindGeneratingFunction[{terms}]