OEIS/coors: Difference between revisions
Jump to navigation
Jump to search
imported>Gfis Created page with "==Generating functions for coordination sequences of uniform tilings=== For the 1248 k-uniform tilings determined by Brian Galebach generating functions (g.f.s) for all corres..." |
imported>Gfis No edit summary |
||
Line 8: | Line 8: | ||
6536 x-1 | 6536 x-1 | ||
5979 x+1 | 5979 x+1 | ||
2850 x^2-x+1 | 2850 x^2-x+1 | ||
4605 x^2+x+1 | 4605 x^2+x+1 | ||
1306 x^4-x^3+x^2-x+1 | 1306 x^4-x^3+x^2-x+1 | ||
2303 x^4+x^3+x^2+x+1 | 2303 x^4+x^3+x^2+x+1 | ||
305 x^6-x^5+x^4-x^3+x^2-x+1 | 305 x^6-x^5+x^4-x^3+x^2-x+1 | ||
1474 x^6+x^5+x^4+x^3+x^2+x+1 | 1474 x^6+x^5+x^4+x^3+x^2+x+1 | ||
328 x^8-x^7+x^5-x^4+x^3-x+1 | 328 x^8-x^7+x^5-x^4+x^3-x+1 | ||
6 x^8+x^7-x^5-x^4-x^3+x+1 | 6 x^8+x^7-x^5-x^4-x^3+x+1 | ||
6 x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1 | 6 x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1 | ||
1492 x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | 1492 x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | ||
32 x^12-x^11 +x^9-x^8 +x^6 -x^4+x^3-x+1 | 32 x^12-x^11 +x^9-x^8 +x^6 -x^4+x^3-x+1 | ||
6 x^12+x^11 -x^9-x^8 +x^6 -x^4-x^3+x+1 | 6 x^12+x^11 -x^9-x^8 +x^6 -x^4-x^3+x+1 | ||
5 x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1 | 5 x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1 | ||
452 x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | 452 x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | ||
89 x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | 89 x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | ||
59 x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | 59 x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | ||
6 x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | 6 x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | ||
6 x^24-x^23+x^19-x^18+x^17-x^16+x^14-x^13+x^12-x^11+x^10-x^8+x^7-x^6+x^5-x+1 | 6 x^24-x^23+x^19-x^18+x^17-x^16+x^14-x^13+x^12-x^11+x^10-x^8+x^7-x^6+x^5-x+1 | ||
Sometimes a mapping of x^n -> x was applied in these factors (n >= 2). | Sometimes a mapping of x^n -> x was applied in these factors (n >= 2). |
Revision as of 13:58, 13 May 2020
Generating functions for coordination sequences of uniform tilings=
For the 1248 k-uniform tilings determined by Brian Galebach generating functions (g.f.s) for all corresponding 6536 coordination seuences were guessed by Maple's gfun:guessgf from 128 initial terms.
The resulting rational g.f.s show - of course ? - rather obvious symmetrical properties.
Denominator polynomials
When the denomiator polynomials are factored, there remain only the following 20, essentially different factors:
6536 x-1 5979 x+1 2850 x^2-x+1 4605 x^2+x+1 1306 x^4-x^3+x^2-x+1 2303 x^4+x^3+x^2+x+1 305 x^6-x^5+x^4-x^3+x^2-x+1 1474 x^6+x^5+x^4+x^3+x^2+x+1 328 x^8-x^7+x^5-x^4+x^3-x+1 6 x^8+x^7-x^5-x^4-x^3+x+1 6 x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1 1492 x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 32 x^12-x^11 +x^9-x^8 +x^6 -x^4+x^3-x+1 6 x^12+x^11 -x^9-x^8 +x^6 -x^4-x^3+x+1 5 x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1 452 x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 89 x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 59 x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 6 x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 6 x^24-x^23+x^19-x^18+x^17-x^16+x^14-x^13+x^12-x^11+x^10-x^8+x^7-x^6+x^5-x+1
Sometimes a mapping of x^n -> x was applied in these factors (n >= 2).