OEIS/coors: Difference between revisions
Jump to navigation
Jump to search
imported>Gfis No edit summary |
imported>Gfis Properties of factors |
||
Line 1: | Line 1: | ||
==Generating functions for coordination sequences of uniform tilings | ==Generating functions for coordination sequences of uniform tilings== | ||
For the 1248 k-uniform tilings determined by Brian Galebach generating functions (g.f.s) for all corresponding 6536 coordination | For the 1248 k-uniform tilings determined by Brian Galebach, generating functions (g.f.s) for all corresponding 6536 coordination sequences (coseq.s) were "guessed" by Maple's gfun:guessgf from 128 initial terms. | ||
The resulting rational g.f.s | The resulting rational g.f.s (with a numerator and a denominator polynomial) have several obvious properties. | ||
===Denominator polynomials === | ===Denominator polynomials === | ||
When the | When the denominator polynomials are factorized, there are only 34 different factors (the leading numbers give the occurrences of the factor): | ||
6536 x-1 | 6536 x-1 | ||
2208 x+1 | |||
2286 x^2+1 -> y+1 | |||
1635 x^2-x+1 | |||
3145 x^2+x+1 | |||
1320 x^4+1 -> y+1 | |||
1061 x^4-x^2+1 -> y^2-y+1 | |||
1246 x^4-x^3+x^2-x+1 | |||
2285 x^4+x^3+x^2+x+1 | |||
120 x^6-x^3+1 -> y^2-y+1 | |||
1448 x^6+x^3+1 -> y^2+y+1 | |||
271 x^6-x^5+x^4-x^3+x^2-x+1 | |||
1474 x^6+x^5+x^4+x^3+x^2+x+1 | 1474 x^6+x^5+x^4+x^3+x^2+x+1 | ||
159 x^8+1 -> y+1 | |||
328 x^8-x^7+x^5-x^4+x^3-x+1 | 23 x^8-x^4+1 -> y^2-y+1 | ||
6 x^8+x^7-x^5-x^4-x^3+x+1 | 54 x^8-x^6+x^4-x^2+1 -> y^4-y^3+y^2-y+1 | ||
328 x^8-x^7 +x^5-x^4+x^3 -x+1 | |||
6 x^8+x^7 -x^5-x^4-x^3 +x+1 | |||
6 x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1 | 6 x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1 | ||
1492 x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | 1492 x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | ||
11 x^12-x^6+1 -> y^2-y+1 | |||
34 x^12-x^10+x^8-x^6+x^4-x^2+1 -> y^6-y^5+y^4-y^3+y^2-y+1 | |||
6 x^12+x^11 -x^9-x^8 +x^6 -x^4-x^3+x+1 | 6 x^12+x^11 -x^9-x^8 +x^6 -x^4-x^3 +x+1 | ||
5 x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1 | 5 x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1 | ||
32 x^12-x^11 +x^9-x^8 +x^6 -x^4+x^3 -x+1 | |||
452 x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | 452 x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | ||
6 x^16+1 -> y+1 | |||
6 x^16-x^12+x^8-x^4+1 -> y^4-y^3+y^2-y+1 | |||
89 x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | 89 x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | ||
12 x^18+x^9+1 -> y^2+y+1 | |||
59 x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | 59 x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | ||
18 x^20+x^15+x^10+x^5+1 -> y^4-y^3+y^2-y+1 | |||
6 x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | 6 x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 | ||
6 x^24-x^23+x^19-x^18+x^17-x^16+x^14-x^13+x^12-x^11+x^10-x^8+x^7-x^6+x^5-x+1 | 6 x^24-x^23+x^19-x^18+x^17-x^16+x^14-x^13+x^12-x^11+x^10-x^8+x^7-x^6+x^5-x+1 | ||
We observe the following properties of for the denominators: | |||
# All denominators have a factor ''(x-1)^2''. | |||
# All coefficents of ''x'' in the factors are +1 or -1. | |||
# Except for the factors ''x-1'' and ''x+1'', all factor have an even degree. | |||
# With substitutions ''x^(k*m) -> y^k'' the number of different factor patterns could be further reduced (to 20). | |||
# After such substitutions, the factors have the form ''sum(k=0..n: (+1 or -1)^k*x^k)'', except for one pattern of degree 8 and two patterns of degree 12. |
Revision as of 19:46, 13 May 2020
Generating functions for coordination sequences of uniform tilings
For the 1248 k-uniform tilings determined by Brian Galebach, generating functions (g.f.s) for all corresponding 6536 coordination sequences (coseq.s) were "guessed" by Maple's gfun:guessgf from 128 initial terms.
The resulting rational g.f.s (with a numerator and a denominator polynomial) have several obvious properties.
Denominator polynomials
When the denominator polynomials are factorized, there are only 34 different factors (the leading numbers give the occurrences of the factor):
6536 x-1 2208 x+1 2286 x^2+1 -> y+1 1635 x^2-x+1 3145 x^2+x+1 1320 x^4+1 -> y+1 1061 x^4-x^2+1 -> y^2-y+1 1246 x^4-x^3+x^2-x+1 2285 x^4+x^3+x^2+x+1 120 x^6-x^3+1 -> y^2-y+1 1448 x^6+x^3+1 -> y^2+y+1 271 x^6-x^5+x^4-x^3+x^2-x+1 1474 x^6+x^5+x^4+x^3+x^2+x+1 159 x^8+1 -> y+1 23 x^8-x^4+1 -> y^2-y+1 54 x^8-x^6+x^4-x^2+1 -> y^4-y^3+y^2-y+1 328 x^8-x^7 +x^5-x^4+x^3 -x+1 6 x^8+x^7 -x^5-x^4-x^3 +x+1 6 x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1 1492 x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 11 x^12-x^6+1 -> y^2-y+1 34 x^12-x^10+x^8-x^6+x^4-x^2+1 -> y^6-y^5+y^4-y^3+y^2-y+1 6 x^12+x^11 -x^9-x^8 +x^6 -x^4-x^3 +x+1 5 x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1 32 x^12-x^11 +x^9-x^8 +x^6 -x^4+x^3 -x+1 452 x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 6 x^16+1 -> y+1 6 x^16-x^12+x^8-x^4+1 -> y^4-y^3+y^2-y+1 89 x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 12 x^18+x^9+1 -> y^2+y+1 59 x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 18 x^20+x^15+x^10+x^5+1 -> y^4-y^3+y^2-y+1 6 x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1 6 x^24-x^23+x^19-x^18+x^17-x^16+x^14-x^13+x^12-x^11+x^10-x^8+x^7-x^6+x^5-x+1
We observe the following properties of for the denominators:
- All denominators have a factor (x-1)^2.
- All coefficents of x in the factors are +1 or -1.
- Except for the factors x-1 and x+1, all factor have an even degree.
- With substitutions x^(k*m) -> y^k the number of different factor patterns could be further reduced (to 20).
- After such substitutions, the factors have the form sum(k=0..n: (+1 or -1)^k*x^k), except for one pattern of degree 8 and two patterns of degree 12.