OEIS/Coordination sequences for lattices: Difference between revisions
Jump to navigation
Jump to search
imported>Gfis Created page with "The recurrences were derived by Mathematica: bin[n_,k_]:=(n!/(n-k)!/k!); === C_n === * [https://oeis.org/A103884 A103884 (C_4)] d:= 4; CoefficientList[Series[(Sum[Binomial[..." |
imported>Gfis A. |
||
Line 1: | Line 1: | ||
The recurrences were derived by Mathematica: | The recurrences were derived by Mathematica. Auxilliary function: | ||
bin[n_,k_]:=(n!/(n-k)!/k!); | bin[n_,k_]:=(n!/(n-k)!/k!); | ||
=== A_n === | |||
* [https://oeis.org/A103881 A103881 (C_4)] | |||
d:= 4; CoefficientList[Series[Sum[(Binomial[d,k])^2*x^k, {k, 0, d}]/(1-x)^d, {x,0,11}],x] | |||
{1, 20, 110, 340, 780, 1500, 2570, 4060, 6040, 8580, 11750, 15620} | |||
InputForm[FullSimplify[bin[n,k]^2]] -> (1 - k + n)^2/k^2 | |||
n:=4; f:= gfun:-rectoproc({a(k)=(n-(k-1))^2/(k^2)*a(k-1),a(0)=1},a(k),remember): map(f, [$0..n]); | |||
[1, 16, 36, 16, 1] | |||
=== A*_n === | |||
* [https://oeis.org/A204621] coordinator triangle, rows are the g.f.s numerator coefficients | |||
* [https://oeis.org/A008535 A008535 (A*_7)] | |||
d:=7; CoefficientList[Series[((Sum[Sum[Binomial[d+1, j], {j,0,Min[k,d-k]}]*x^k, {k,0,d}])/(1-x)^d),{x,0,10}],x] | |||
{1, 16, 128, 688, 2746, 8752, 23536, 55568, 118498, 232976, 428752} | |||
=== B_n === | |||
A103883 | |||
d:= 4; CoefficientList[Series[(Sum[(Binomial[2n+1,2k] - 2*k*Binomial[d,k])*x^k, {k,0,d}])/(1-x)^d, {x,0,11}],x] | |||
{1, 32, 224, 768, 1856, 3680, 6432, 10304, 15488, 22176, 30560, 40832} | |||
=== C_n === | === C_n === | ||
Line 7: | Line 24: | ||
{1, 32, 192, 608, 1408, 2720, 4672, 7392, 11008, 15648, 21440, 28512} | {1, 32, 192, 608, 1408, 2720, 4672, 7392, 11008, 15648, 21440, 28512} | ||
InputForm[FullSimplify[bin[2*n,2*k]/bin[2*n,2*k-2]]] -> ((-1 + 2*k - 2*n)*(-1 + k - n))/(k*(-1 + 2*k)) | InputForm[FullSimplify[bin[2*n,2*k]/bin[2*n,2*k-2]]] -> ((-1 + 2*k - 2*n)*(-1 + k - n))/(k*(-1 + 2*k)) | ||
n:=4; f:= gfun:-rectoproc({a(k)=(2*n-2*k+1)*(n-(k-1))/(k*(2*k-1))*a(k-1),a(0)=1},a(k),remember): map(f, [$0 | n:=4; f:= gfun:-rectoproc({a(k)=(2*n-2*k+1)*(n-(k-1))/(k*(2*k-1))*a(k-1),a(0)=1},a(k),remember): map(f, [$0..n]); | ||
[1, 28, 70, 28, 1] |
Revision as of 14:18, 28 July 2020
The recurrences were derived by Mathematica. Auxilliary function:
bin[n_,k_]:=(n!/(n-k)!/k!);
A_n
d:= 4; CoefficientList[Series[Sum[(Binomial[d,k])^2*x^k, {k, 0, d}]/(1-x)^d, {x,0,11}],x] {1, 20, 110, 340, 780, 1500, 2570, 4060, 6040, 8580, 11750, 15620} InputForm[FullSimplify[bin[n,k]^2]] -> (1 - k + n)^2/k^2 n:=4; f:= gfun:-rectoproc({a(k)=(n-(k-1))^2/(k^2)*a(k-1),a(0)=1},a(k),remember): map(f, [$0..n]); [1, 16, 36, 16, 1]
A*_n
- [1] coordinator triangle, rows are the g.f.s numerator coefficients
- A008535 (A*_7)
d:=7; CoefficientList[Series[((Sum[Sum[Binomial[d+1, j], {j,0,Min[k,d-k]}]*x^k, {k,0,d}])/(1-x)^d),{x,0,10}],x] {1, 16, 128, 688, 2746, 8752, 23536, 55568, 118498, 232976, 428752}
B_n
A103883 d:= 4; CoefficientList[Series[(Sum[(Binomial[2n+1,2k] - 2*k*Binomial[d,k])*x^k, {k,0,d}])/(1-x)^d, {x,0,11}],x] {1, 32, 224, 768, 1856, 3680, 6432, 10304, 15488, 22176, 30560, 40832}
C_n
d:= 4; CoefficientList[Series[(Sum[Binomial[2n,2k]*x^k, {k, 0, d}])/(1-x)^d, {x,0,11}],x] {1, 32, 192, 608, 1408, 2720, 4672, 7392, 11008, 15648, 21440, 28512} InputForm[FullSimplify[bin[2*n,2*k]/bin[2*n,2*k-2]]] -> ((-1 + 2*k - 2*n)*(-1 + k - n))/(k*(-1 + 2*k)) n:=4; f:= gfun:-rectoproc({a(k)=(2*n-2*k+1)*(n-(k-1))/(k*(2*k-1))*a(k-1),a(0)=1},a(k),remember): map(f, [$0..n]); [1, 28, 70, 28, 1]