OEIS/Eta products: Difference between revisions

From tehowiki
Jump to navigation Jump to search
imported>Gfis
No edit summary
imported>Gfis
with f
Line 5: Line 5:
===Jacobi theta_3 θ_3, Ramanujan phi φ ===
===Jacobi theta_3 θ_3, Ramanujan phi φ ===
  [https://oeis.org/A000122 A000122] 1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2
  [https://oeis.org/A000122 A000122] 1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2
a(0) = 1, for n >= 1: a(n) = 2 if n is a square, otherwise 0.
  eta(q^2)^5 / (eta(q)*eta(q^4))^2
  eta(q^2)^5 / (eta(q)*eta(q^4))^2
  Euler transform of period 4: [2,-3,2,-1]
  Euler transform of period 4: [2,-3,2,-1]
Line 10: Line 11:
===Jacobi theta_4 θ_4===
===Jacobi theta_4 θ_4===
  [https://oeis.org/A002448 A002448] 1, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 2
  [https://oeis.org/A002448 A002448] 1, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 2
a(0) = 1, for n >= 1: a(n) = 2 * (-1)^sqrt(n) if n is a square, otherwise 0.
  eta(q)^2 / eta(q^2)
  eta(q)^2 / eta(q^2)
  Euler transform of period 2: [2,-1]
  Euler transform of period 2: [2,-1]
  eps P="[1,2;2,-1]"
  eps P="[1,2;2,-1]"
===Ramanujan psi ψ===
===Ramanujan psi ψ===
* [https//:oeis.org/A000700 A000700]
* [https//:oeis.org/A010054 A010054] 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0
a(n) = 1 if n is a triangular number, otherwise 0.
q^(-1/8) * eta(q^2)^2 / eta(q)
Euler transform of period 2: [1,-1]
eps P="[2,2;1,-1]"
===Ramanujan chi χ===
===Ramanujan chi χ===
  [https//:oeis.org/A000700 A000700] 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5
  [https//:oeis.org/A000700 A000700] 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5
q^(1/24) * eta(q^2)^2 /(eta(q) * eta(q^4))
  q^(1/24) * eta(q^2)^2 /(eta(q) * eta(q^4))
  Euler transform of period 4: [1,-1,1,0]
  Euler transform of period 4: [1,-1,1,0]
  eps P="[2,2;1,-1;4,-1]"
  eps P="[2,2;1,-1;4,-1]"
===Ramanujan f===
===Ramanujan f===
  [https//:oeis.org/A121373 A121373] 1, 1, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1, 0
  [https//:oeis.org/A121373 A121373] 1, 1, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1
  q^(1/24) * eta(q^2)^2 /(eta(q) * eta(q^4))
a(n) = (-1)^n * [https://oeis.org/A010815 A010815](n)
  Euler transform of period 4: [1,-1,1,0]
  q^(-1/24) * eta(q^2)^3 / (eta(q) * eta(q^4))
  eps P="[2,2;1,-1;4,-1]"
  Euler transform of period 4: [[1,-2,1,-1]
  eps P="[2,3;1,-1;4,-1]"
===Cookbook===
===Cookbook===
* For all tuples [m,k] add m*k.
* For all tuples [m,k] add m*k.
* The resulting integer part gives the q-shift, while the fractional part is noted before the eta product.
* The resulting integer part gives the q-shift, while the fractional part is noted before the eta product.

Revision as of 15:54, 23 January 2023

Dedekind eta η

  • [https:oeis.org/A000700 A000700]

Jacobi theta_2 θ_2

A089800 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2 ... = theta_2(q)/q^(1/4)

Jacobi theta_3 θ_3, Ramanujan phi φ

A000122 1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2
a(0) = 1, for n >= 1: a(n) = 2 if n is a square, otherwise 0.
eta(q^2)^5 / (eta(q)*eta(q^4))^2
Euler transform of period 4: [2,-3,2,-1]
eps P="[2,5;1,-2;4,-2]"

Jacobi theta_4 θ_4

A002448 1, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 2
a(0) = 1, for n >= 1: a(n) = 2 * (-1)^sqrt(n) if n is a square, otherwise 0.
eta(q)^2 / eta(q^2)
Euler transform of period 2: [2,-1]
eps P="[1,2;2,-1]"

Ramanujan psi ψ

  • [https//:oeis.org/A010054 A010054] 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0
a(n) = 1 if n is a triangular number, otherwise 0.
q^(-1/8) * eta(q^2)^2 / eta(q)
Euler transform of period 2: [1,-1]
eps P="[2,2;1,-1]"

Ramanujan chi χ

[https//:oeis.org/A000700 A000700] 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5
 q^(1/24) * eta(q^2)^2 /(eta(q) * eta(q^4))
Euler transform of period 4: [1,-1,1,0]
eps P="[2,2;1,-1;4,-1]"

Ramanujan f

[https//:oeis.org/A121373 A121373] 1, 1, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1
a(n) = (-1)^n * A010815(n)
q^(-1/24) * eta(q^2)^3 / (eta(q) * eta(q^4))
Euler transform of period 4: [[1,-2,1,-1]
eps P="[2,3;1,-1;4,-1]"

Cookbook

  • For all tuples [m,k] add m*k.
  • The resulting integer part gives the q-shift, while the fractional part is noted before the eta product.