OEIS/Eta products: Difference between revisions

From tehowiki
Jump to navigation Jump to search
imported>Gfis
eta
imported>Gfis
Cookbook for qpf
Line 1: Line 1:
===Eta product signatures (eps)===
The coefficient sequences for generating functions that are products of the eta function can be computed conveniently by an Euler transform of some periodic integer sequence.
Following Michael Somos, we describe an eta product by a matrix resp. a list of pairs <code>(q<sub>i</sub>, e<sub>i</sub>)</code> of the form
[q1,e1;q2,e2;q3,e3;...]
The q<sub>i</sub> the powers of q and the e<sub>i</sub> are powers of the eta function. The latter can be negative.
===Partition numbers===
===Partition numbers===
  [https://oeis.org/A000041 A000041] 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231
  [https://oeis.org/A000041 A000041] 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231
Line 38: Line 43:
  Euler transform of period 4: [[1,-2,1,-1]
  Euler transform of period 4: [[1,-2,1,-1]
  eps P="[2,3;1,-1;4,-1]"
  eps P="[2,3;1,-1;4,-1]"
===Cookbook===
===Leading power of q factor (pqf) ===
* For all tuples [m,k] add m*k.
Some of the generating functions have an additional power of q factor, in order to normalize the leading coefficient to <code>q^0</code>.
* The resulting integer part gives the q-shift, while the fractional part is noted before the eta product.
* Example [https://oeis.org/A226862 A226862]:
Expansion of q^(-1/6) * eta(q^4) * eta(q^6)^5 / (eta(q^3) * eta(q^12))^2
eps P="[4,1;6,5;3,-2;12,-2]"
For all pairs we multiply the q power with the eta power and add the results, giving 4*1 + 6*5 - 3*2 - 12*2 = 4 + 30 - 6 - 24 = 4. This is the negative numerator of the pqf (expanded for denominator 24).
* Example [https://oeis.org/A286813 A286813]:
q^(-9/8) * (eta(q^2) * eta(q^16))^2 / (eta(q) * eta(q^8))
eps P="[2,2;16,2;1,-1;8,-1]" gives 2*2 * 16*2  - 1*1 - 8*1 = 36 - 9 = 27 and pqf = q^(-27/24)
* Example [https://oeis.org/A286134 A286134] 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, -1, -1
q^(-1/2) * eta(q^5) * eta(q^6) * eta(q^7) * eta(q^210)
eps P="[5,1;6,1;7,1;210,1]" gives 18 + 210 = 228 and pqf = q^(-228/24) = -9 -1/2.
The sequence is shifted right by 9 positions in this case.

Revision as of 17:05, 23 January 2023

Eta product signatures (eps)

The coefficient sequences for generating functions that are products of the eta function can be computed conveniently by an Euler transform of some periodic integer sequence. Following Michael Somos, we describe an eta product by a matrix resp. a list of pairs (qi, ei) of the form

[q1,e1;q2,e2;q3,e3;...]

The qi the powers of q and the ei are powers of the eta function. The latter can be negative.

Partition numbers

A000041 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231
Euler transform of period 1: [1]

Dedkind eta η (without the q^(1/24) factor)

A010815 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1
eta(q)
Euler transform of period 1: [-1]
eps P="[1,1]"

Jacobi theta_2 θ_2

A089800 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2 ... = theta_2(q)/q^(1/4)

Jacobi theta_3 θ_3, Ramanujan phi φ

A000122 1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2
a(0) = 1, for n >= 1: a(n) = 2 if n is a square, otherwise 0.
eta(q^2)^5 / (eta(q)*eta(q^4))^2
Euler transform of period 4: [2,-3,2,-1]
eps P="[2,5;1,-2;4,-2]"

Jacobi theta_4 θ_4

A002448 1, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 2
a(0) = 1, for n >= 1: a(n) = 2 * (-1)^sqrt(n) if n is a square, otherwise 0.
eta(q)^2 / eta(q^2)
Euler transform of period 2: [2,-1]
eps P="[1,2;2,-1]"

Ramanujan psi ψ

A010054 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0
a(n) = 1 if n is a triangular number, otherwise 0.
q^(-1/8) * eta(q^2)^2 / eta(q)
Euler transform of period 2: [1,-1]
eps P="[2,2;1,-1]"

Ramanujan chi χ

A000700 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5
q^(1/24) * eta(q^2)^2 /(eta(q) * eta(q^4))
Euler transform of period 4: [1,-1,1,0]
eps P="[2,2;1,-1;4,-1]"

Ramanujan f

A121373 1, 1, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1
a(n) = (-1)^n * A010815(n)
q^(-1/24) * eta(q^2)^3 / (eta(q) * eta(q^4))
Euler transform of period 4: [[1,-2,1,-1]
eps P="[2,3;1,-1;4,-1]"

Leading power of q factor (pqf)

Some of the generating functions have an additional power of q factor, in order to normalize the leading coefficient to q^0.

Expansion of q^(-1/6) * eta(q^4) * eta(q^6)^5 / (eta(q^3) * eta(q^12))^2
eps P="[4,1;6,5;3,-2;12,-2]"

For all pairs we multiply the q power with the eta power and add the results, giving 4*1 + 6*5 - 3*2 - 12*2 = 4 + 30 - 6 - 24 = 4. This is the negative numerator of the pqf (expanded for denominator 24).

q^(-9/8) * (eta(q^2) * eta(q^16))^2 / (eta(q) * eta(q^8))
eps P="[2,2;16,2;1,-1;8,-1]" gives 2*2 * 16*2  - 1*1 - 8*1 = 36 - 9 = 27 and pqf = q^(-27/24)
  • Example A286134 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, -1, -1
q^(-1/2) * eta(q^5) * eta(q^6) * eta(q^7) * eta(q^210)
eps P="[5,1;6,1;7,1;210,1]" gives 18 + 210 = 228 and pqf = q^(-228/24) = -9 -1/2. 

The sequence is shifted right by 9 positions in this case.