OEIS/Eta products: Difference between revisions
imported>Gfis corr. |
imported>Gfis Computation |
||
Line 4: | Line 4: | ||
[q1,e1;q2,e2;q3,e3;...] | [q1,e1;q2,e2;q3,e3;...] | ||
The pairs are separated by ";". | The pairs are separated by ";". | ||
The order of the pairs is irrelevant for the computation, but see the section about normalization, below. | |||
* The ''q<sub>i</sub>'' are the powers of the argument ''q'' inside the eta function , and | * The ''q<sub>i</sub>'' are the powers of the argument ''q'' inside the eta function , and | ||
* the ''e<sub>i</sub>'' are the powers of the eta functions. Only these can be negative. | * the ''e<sub>i</sub>'' are the powers of the eta functions. Only these can be negative. | ||
Line 23: | Line 24: | ||
eta(q^2)^5 / (eta(q)*eta(q^4))^2 | eta(q^2)^5 / (eta(q)*eta(q^4))^2 | ||
Euler transform of period 4: [2,-3,2,-1] | Euler transform of period 4: [2,-3,2,-1] | ||
eps P="[2,5; | eps P="[2,5;4,-2;1,-2]" | ||
====Jacobi theta_4 θ_4==== | ====Jacobi theta_4 θ_4==== | ||
[https://oeis.org/A002448 A002448] 1, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 2 | [https://oeis.org/A002448 A002448] 1, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 2 | ||
Line 40: | Line 41: | ||
q^(1/24) * eta(q^2)^2 /(eta(q) * eta(q^4)) | q^(1/24) * eta(q^2)^2 /(eta(q) * eta(q^4)) | ||
Euler transform of period 4: [1,-1,1,0] | Euler transform of period 4: [1,-1,1,0] | ||
eps P="[2,2; | eps P="[2,2;4,-1;1,-1]" | ||
====Ramanujan f==== | ====Ramanujan f==== | ||
[https://oeis.org/A121373 A121373] 1, 1, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1 | [https://oeis.org/A121373 A121373] 1, 1, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1 | ||
a(n) = (-1)^n * [https://oeis.org/A010815 A010815](n) | a(n) = (-1)^n * [https://oeis.org/A010815 A010815](n) | ||
q^(-1/24) * eta(q^2)^3 / (eta(q) * eta(q^4)) | q^(-1/24) * eta(q^2)^3 / (eta(q) * eta(q^4)) | ||
Euler transform of period 4: | Euler transform of period 4: [1,-2,1,-1] | ||
eps P="[2,3; | eps P="[2,3;4,-1;1,-1]" | ||
===Leading power of q factor (pqf) === | ===Leading power of q factor (pqf) === | ||
Some of the generating functions have an additional power of q factor, in order to normalize the leading coefficient to <code>q^0</code>. | Some of the generating functions have an additional power of q factor, in order to normalize the leading coefficient to <code>q^0</code>. | ||
Line 60: | Line 61: | ||
eps P="[5,1;6,1;7,1;210,1]" gives 18 + 210 = 228 and pqf = q^(-228/24) = -9 -1/2. | eps P="[5,1;6,1;7,1;210,1]" gives 18 + 210 = 228 and pqf = q^(-228/24) = -9 -1/2. | ||
The sequence is shifted right by 9 positions in this case. | The sequence is shifted right by 9 positions in this case. | ||
===Computation of the period from an EPS=== | |||
This algorithm is rather straightforward. It uses an array of integers that are usually rather small. The length of the array is the least common multiply (LCM) of all ''q<sub>i</sub>''. The array with indexes [0..lcm-1] is initialized with zeros. | |||
# For all pairs ''(q<sub>i</sub>, e<sub>i</sub>)'' | |||
## Build a block of '' q<sub>i</sub> - 1'' zeros, followed by ''-1 * e<sub>i</sub>''. | |||
## Add a sufficient concatenation of such blocks onto the whole array. | |||
# The resulting array is the period for the Euler transform. | |||
As an example, we derive the period of the theta_3 function above from its EPS <code>[2,5;4,-2;1,-2]</code>. The period length is LCM(2,1,4) = 4. | |||
pair 2,5 -> 0 -5 0 -5 | |||
pair 4,-2 -> 0 0 0 2 | |||
pair 1,-2 -> 2 2 2 2 | |||
-------------------------- | |||
sum = period = [2,-3, 2,-1] | |||
===Normalization of an EPS=== | ===Normalization of an EPS=== | ||
For long lists of generating functions it is convenient to require all EPSs to be normalized, such that they can be tested for equality and can be sorted. | For long lists of generating functions it is convenient to require all EPSs to be normalized, such that they can be tested for equality and can be sorted. |
Revision as of 22:37, 23 January 2023
Eta product signatures (EPS)
The coefficient sequences for generating functions that are products of the eta function can be computed conveniently by an Euler transform of some periodic integer sequence. Following Michael Somos, we describe an eta product by a matrix resp. a list of pairs (qi, ei) of the form
[q1,e1;q2,e2;q3,e3;...]
The pairs are separated by ";". The order of the pairs is irrelevant for the computation, but see the section about normalization, below.
- The qi are the powers of the argument q inside the eta function , and
- the ei are the powers of the eta functions. Only these can be negative.
The following section contains a number of examples.
Common generating functions
Partition numbers
A000041 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231 Euler transform of period 1: [1]
Dedkind eta η (without the q^(1/24) factor)
A010815 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1 eta(q) Euler transform of period 1: [-1] eps P="[1,1]"
Jacobi theta_2 θ_2
A089800 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2 ... = theta_2(q)/q^(1/4)
Jacobi theta_3 θ_3, Ramanujan phi φ
A000122 1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2 a(0) = 1, for n >= 1: a(n) = 2 if n is a square, otherwise 0. eta(q^2)^5 / (eta(q)*eta(q^4))^2 Euler transform of period 4: [2,-3,2,-1] eps P="[2,5;4,-2;1,-2]"
Jacobi theta_4 θ_4
A002448 1, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 2 a(0) = 1, for n >= 1: a(n) = 2 * (-1)^sqrt(n) if n is a square, otherwise 0. eta(q)^2 / eta(q^2) Euler transform of period 2: [2,-1] eps P="[1,2;2,-1]"
Ramanujan psi ψ
A010054 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0 a(n) = 1 if n is a triangular number, otherwise 0. q^(-1/8) * eta(q^2)^2 / eta(q) Euler transform of period 2: [1,-1] eps P="[2,2;1,-1]"
Ramanujan chi χ
A000700 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5 q^(1/24) * eta(q^2)^2 /(eta(q) * eta(q^4)) Euler transform of period 4: [1,-1,1,0] eps P="[2,2;4,-1;1,-1]"
Ramanujan f
A121373 1, 1, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1 a(n) = (-1)^n * A010815(n) q^(-1/24) * eta(q^2)^3 / (eta(q) * eta(q^4)) Euler transform of period 4: [1,-2,1,-1] eps P="[2,3;4,-1;1,-1]"
Leading power of q factor (pqf)
Some of the generating functions have an additional power of q factor, in order to normalize the leading coefficient to q^0
.
- Example A226862:
Expansion of q^(-1/6) * eta(q^4) * eta(q^6)^5 / (eta(q^3) * eta(q^12))^2 eps P="[4,1;6,5;3,-2;12,-2]"
For all pairs we multiply the q power with the eta power and add the results, giving 4*1 + 6*5 - 3*2 - 12*2 = 4 + 30 - 6 - 24 = 4. This is the negative numerator of the pqf (expanded for denominator 24).
- Example A286813:
q^(-9/8) * (eta(q^2) * eta(q^16))^2 / (eta(q) * eta(q^8)) eps P="[2,2;16,2;1,-1;8,-1]" gives 2*2 * 16*2 - 1*1 - 8*1 = 36 - 9 = 27 and pqf = q^(-27/24)
- Example A286134 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, -1, -1
q^(-1/2) * eta(q^5) * eta(q^6) * eta(q^7) * eta(q^210) eps P="[5,1;6,1;7,1;210,1]" gives 18 + 210 = 228 and pqf = q^(-228/24) = -9 -1/2.
The sequence is shifted right by 9 positions in this case.
Computation of the period from an EPS
This algorithm is rather straightforward. It uses an array of integers that are usually rather small. The length of the array is the least common multiply (LCM) of all qi. The array with indexes [0..lcm-1] is initialized with zeros.
- For all pairs (qi, ei)
- Build a block of qi - 1 zeros, followed by -1 * ei.
- Add a sufficient concatenation of such blocks onto the whole array.
- The resulting array is the period for the Euler transform.
As an example, we derive the period of the theta_3 function above from its EPS [2,5;4,-2;1,-2]
. The period length is LCM(2,1,4) = 4.
pair 2,5 -> 0 -5 0 -5 pair 4,-2 -> 0 0 0 2 pair 1,-2 -> 2 2 2 2 -------------------------- sum = period = [2,-3, 2,-1]
Normalization of an EPS
For long lists of generating functions it is convenient to require all EPSs to be normalized, such that they can be tested for equality and can be sorted. We use the following rules:
- The sublist of pairs with positive ei comes before the sublist with negative ei.
- Inside a sublist the first components qi are in descending order.
- Successive pairs with the same qi are combined into a single pair with the sum of the ei as second component.
Exponentiation of an EPS
An EPS is taken to a power m by simply multiplying all qi (the first components in the pairs) by m. The exponent may be 1/2 for the square root, or any other fraction mn/md as long as the qi are all divisible by md.
Multiplication of two EPSs
Two EPSs could be multiplied by simply concatenating their list of pairs. It is convenient, howver, to combine all occurrences of specific qi by adding the corresponding eta exponents e.