OEIS/Infinite Products: Difference between revisions
Jump to navigation
Jump to search
imported>Gfis Transforms |
List of common products |
||
Line 29: | Line 29: | ||
# If we set f(n) = - n ([https://oeis.org/A001478 A001478]) and g(n) = n ([https://oeis.org/A000027 A000027]), we get A266964. | # If we set f(n) = - n ([https://oeis.org/A001478 A001478]) and g(n) = n ([https://oeis.org/A000027 A000027]), we get A266964. | ||
# With the default f(n) = g(n) = [https://oeis.org/A000012 A000012] (all 1's), we get [https://oeis.org/A000041 A000041] (number of partitions of n). | # With the default f(n) = g(n) = [https://oeis.org/A000012 A000012] (all 1's), we get [https://oeis.org/A000041 A000041] (number of partitions of n). | ||
=== | === List of common products === | ||
* [https://oeis.org/ | Maple: | ||
seq(coeff(series(mul((1-3*x^k), k = 1..n), x, n+1), x, n), n=0..15); | |||
* [https://oeis.org/A000009 A000009] Product_{k>=1} (1+1*x^k) | |||
* [https://oeis.org/A032302 A032302] Product_{k>=1} (1+2*x^k) | |||
* [https://oeis.org/A032308 A032308] Product_{k>=1} (1+3*x^k) | |||
* [https://oeis.org/A261568 A261568] Product_{k>=1} (1+4*x^k) | |||
* [https://oeis.org/A261569 A261569] Product_{k>=1} (1+5*x^k) | |||
* [https://oeis.org/A010815 A010815] Product_{k>=1} (1-1*x^k) | |||
* [https://oeis.org/A000041 A000041] Product_{k>=1} (1-1*x^k)^(-1) | |||
* [https://oeis.org/A070877 A070877] Product_{k>=1} (1-2*x^k) | |||
* [https://oeis.org/A070933 A070933] Product_{k>=1} (1-2*x^k)^(-1) | |||
* [https://oeis.org/A292128 A292128] Product_{k>=1} (1-3*x^k) | |||
* [https://oeis.org/A242587 A242587] Product_{k>=1} (1-3*x^k)^(-1) | |||
* [https://oeis.org/A246936 A246936] Product_{k>=1} (1-4*x^k)^(-1) | |||
* [https://oeis.org/A246937 A246937] Product_{k>=1} (1-5*x^k)^(-1) |
Revision as of 13:12, 15 December 2023
OEIS collection of transforms
weighout b from a in 1+SUM b_n x^n = PI (1+x^n)^a_n weighouti a from b in 1+SUM b_n x^n = PI (1+x^n)^a_n weighini a from b in 1+SUM b_n x^n = PI (1+x^a_n) weigh2out b from a in 1+SUM b_n x^n = PI (x^-n+1+x^n)^a_n weigh2outi a from b in 1+SUM b_n x^n = PI (x^-n+1+x^n)^a_n weigh2in b from a in 1+SUM b_n x^n = PI (x^-a_n+1+x^a_n) weigh2ini a from b in 1+SUM b_n x^n = PI (x^-a_n+1+x^a_n)
Programs
A046042 Number of partitions of n into fourth powers.
(Maple) g := -1 + 1/product(1 - x^(j^4), j=1..10): gser := series(g, x=0, 105): seq(coeff(gser, x, n), n=1..102); (Maple, A303350) seq(coeff(series(mul((1+4*x^k)^(1/2), k = 1..n), x, n+1), x, n), n=0..40); (Mathematica) g = -1 + 1/Product[1 - x^(j^4), {j, 1, 10}]; gser = Series[g, {x, 0, 105}]; Table[Coefficient[gser, x, n], {n, 1, 102}] (PARI, A322199) {a(n) = polcoeff( 1/prod(m=1, n, 1 - (2^m+1)*x^m +x*O(x^n)), n)} for(n=0, 30, print1(a(n), ","))
Generalized Euler transform
- defined by Seiichi Manyama in A266964
Product_{k>0} (1 - g(k)*x^k)^(- f(k)) = a(0) + a(1)*x + a(2)*x^2 + ...
- If we set g(n) = 1, we get the usual Euler transform.
- If we set f(n) = - h(n) and g(n) = -1, we get the weighout transform (cf. A026007).
- If we set f(n) = - n (A001478) and g(n) = n (A000027), we get A266964.
- With the default f(n) = g(n) = A000012 (all 1's), we get A000041 (number of partitions of n).
List of common products
Maple:
seq(coeff(series(mul((1-3*x^k), k = 1..n), x, n+1), x, n), n=0..15);