Collatz Streetmap

From tehowiki
Revision as of 16:32, 24 August 2018 by imported>Gfis (new descr.)
Jump to navigation Jump to search

Introduction

When all Collatz sequences are read backwards, they form a graph starting with 1, 2 ..., hopefully without cycles (except for 1,2,4,1,2,4 ...). At each node n in the graph, the path starting at the root (4) and with the last node n can in principle be continued to 2 new nodes by a

  • "m"-step: n * 2 (which is always possible), or a
  • "d"-step: (n - 1) / 3 (which is possible only if n - 1 mod 3 = 0).

When n mod 3 = 0, the path will continue with m-steps only, since the duplication maintains the divisibility by 3.

Literature

Motivation: Patterns in sequences with same length

When Collatz sequences are investigated, there are a lot of pairs of adjacent start values with the same sequence length, and with a characteristical neighbourhood of every other value, for example (from OEIS A070165):

142/104: [142 m  71 d 214 m 107 d 322 m 161 d 484 m  242 m 121 d | 364, 182, 91, ... 10, 5, 16, 8, 4, 2, 1]
           +1  *6+4    +1  *6+4    +1  *6+4    +1   *6+4  *6+2      =    =  ...
143/104: [143 d 430 m 215 d 646 m 323 d 970 m 485 d 1456 m 728 m | 364, 182, 91, ... 10, 5, 16, 8, 4, 2, 1]

Collatz roads

We define a "road" (with 2 parallel "lanes") as a sequence of pairs of elements (in 2 Collatz sequences with adjacent start values, read from right to left). A road is constructed by taking some n (364 in the example, the last common element of the 2 sequences) with n = 4 mod 6, and by applying the steps

d m m d m d m d ... 
m m d m d m d m ...

in alternating sequence, until one of the elements in the pairs becomes divisible by 3. The construction yields one road with an upper lane (left elements of the pairs) and a lower lane (right elements). In the first attempt one can construct the roads for all starting values 4, 10, 16, 22 ... 4+6*n, and list them as rows with lists of pairs: