OEIS/Eta products

From tehowiki
Revision as of 15:54, 23 January 2023 by imported>Gfis (with f)
Jump to navigation Jump to search

Dedekind eta η

  • [https:oeis.org/A000700 A000700]

Jacobi theta_2 θ_2

A089800 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2 ... = theta_2(q)/q^(1/4)

Jacobi theta_3 θ_3, Ramanujan phi φ

A000122 1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2
a(0) = 1, for n >= 1: a(n) = 2 if n is a square, otherwise 0.
eta(q^2)^5 / (eta(q)*eta(q^4))^2
Euler transform of period 4: [2,-3,2,-1]
eps P="[2,5;1,-2;4,-2]"

Jacobi theta_4 θ_4

A002448 1, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 2
a(0) = 1, for n >= 1: a(n) = 2 * (-1)^sqrt(n) if n is a square, otherwise 0.
eta(q)^2 / eta(q^2)
Euler transform of period 2: [2,-1]
eps P="[1,2;2,-1]"

Ramanujan psi ψ

  • [https//:oeis.org/A010054 A010054] 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0
a(n) = 1 if n is a triangular number, otherwise 0.
q^(-1/8) * eta(q^2)^2 / eta(q)
Euler transform of period 2: [1,-1]
eps P="[2,2;1,-1]"

Ramanujan chi χ

[https//:oeis.org/A000700 A000700] 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5
 q^(1/24) * eta(q^2)^2 /(eta(q) * eta(q^4))
Euler transform of period 4: [1,-1,1,0]
eps P="[2,2;1,-1;4,-1]"

Ramanujan f

[https//:oeis.org/A121373 A121373] 1, 1, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1
a(n) = (-1)^n * A010815(n)
q^(-1/24) * eta(q^2)^3 / (eta(q) * eta(q^4))
Euler transform of period 4: [[1,-2,1,-1]
eps P="[2,3;1,-1;4,-1]"

Cookbook

  • For all tuples [m,k] add m*k.
  • The resulting integer part gives the q-shift, while the fractional part is noted before the eta product.