OEIS/A322469

From tehowiki
Revision as of 09:56, 8 December 2018 by imported>Gfis (preparation for OEIS)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Name: Permutation of the natural numbers: Step by 4 and replace factors 3 by 2.
3, 1, 2, 7, 11, 15, 5, 10, 19, 23, 27, 9, 18, 6, 12, 4, 8, 31, 35, 39, 13, 
26, 43, 47, 51, 17, 34, 55, 59, 63, 21, 42, 14, 28, 67, 71, 75, 25, 50, 79, 
83, 87, 29, 58, 91, 95, 99, 33, 66, 22, 44, 103, 107, 111, 37, 74

Offset: 1,1
Comments: The sequence is the flattened form of a table T(i, j)
(c.f. the example below) which has rows í >= 1 consisting of 
subsequences of varying length as defined by the 
following algorithm: 
    T(i, 1) := 4i - 1; j := 1;
    while T(i, j) divisible by 3 do
        T(i, j + 1) := T(i, j) / 3; 
        T(i, j + 2) := T(i, j + 1) * 2;
        j := j + 2;
    end while
The algorithm always stops, and in one row, 
it successively replaces any factor 3 by a factor 2.

Property: The sequence is a permutation of the natural numbers > 0.
Proof: (Start)
The values in columns j in the table's rows i of the form i = f * k + g, 
k >= 0, if such columns are present, have the following residues modulo 
powers of 2:

 j | Op. | Form of i |  T(i, j)  |  Residues  | Residues not yet covered
---|-----| ----------|-----------|------------|-------------------------
 1 |     |  1k +  1  |   4k +  3 |   3 mod  4 |   0,  1,  2     mod  4
 2 | /3  |  3k +  1  |   4k +  1 |   1 mod  4 |   0,  2,  4,  6 mod  8
 3 | *2  |  3k +  1  |   8k +  2 |   2 mod  8 |   0,  4,  6     mod  8
 4 | /3  |  9k +  7  |   8k +  6 |   6 mod  8 |   0,  4,  8, 12 mod 16
 5 | *2  |  9k +  7  |  16k + 12 |  12 mod 16 |   0,  4,  8     mod 16
 6 | /3  | 27k +  7  |  16k +  4 |   4 mod 16 |   0,  8, 16, 24 mod 32
 7 | *2  | 27k +  7  |  32k +  8 |   8 mod 32 |   0, 16, 24     mod 32
 8 | /3  | 81k + 61  |  32k + 24 |  24 mod 32 |   0, 16, 32, 48 mod 64
 9 | *2  | 81k + 61  |  64k + 48 |  48 mod 64 |   0, 16, 32     mod 64
...|     | f*k +  g  |  ... +  r |            |

In general, f is a power of 3 increasing in every second column, 
and g is taken from A066443 (a(0) = 1; a(n) = 9 * a(n-1) - 2 
for n > 0). g increases in every fourth column. The residues r
follow the pattern (3, 1, 1, 3) * 2^h, where h increases in 
every second column.

The residues in each column and therefore the values are all disjoint, 
and with i (and j, k) going to infinity, they cover all natural numbers > 0. 
(End)

Example:
  i| j=1  2  3  4  5  6
  -+--------------------
  1:   3  1  2
  2:   7
  3:  11
  4:  15  5 10
  5:  19
  6:  23
  7:  27  9 18  6 12  4

Prog: (Perl) 
use integer; my $n = 1; my $i = 1; 
while ($i < 1000) {
  my $an = 4 * $i - 1; print "$n $an\n"; $n ++;
  while ($an % 3 == 0) {
    $an /= 3; print "$n $an\n"; $n ++;
    $an *= 2; print "$n $an\n"; $n ++;
  } $i ++; 
} # A323232.pl, Georg Fischer Dec. 9 2018 

Crossrefs: C.f. A066443, A084101
Keywords: nonn,tabf,easy
Author: Georg Fischer