OEIS/Infinite Products
Infinite Products in your CAS
A046042 Number of partitions of n into fourth powers.
- Maple
g:=-1+1/product(1-x^(j^4), j=1..10): gser:=series(g, x=0, 105): seq(coeff(gser, x, n), n=1..102);
- Mathematica
g = -1 + 1/Product[1 - x^(j^4), {j, 1, 10}]; gser = Series[g, {x, 0, 105}]; Table[Coefficient[gser, x, n], {n, 1, 102}]
Generalized Euler transform
- defined by Seiichi Manyama in A266964
Product_{k>0} (1 - g(k)*x^k)^(- f(k)) = a(0) + a(1)*x + a(2)*x^2 + ...
- If we set g(n) = 1, we get the usual https://oeis.org/wiki/Euler_transform Euler transform].
- If we set f(n) = - h(n) and g(n) = -1, we get the weighout transform (cf. A026007).
- If we set f(n) = - n (A001478) and g(n) = n (A000027), we get A266964.
- With the default f(n) = g(n) = A000012 (all 1's), we get A000041 (number of partitions of n).